168 research outputs found

    Asymmetric WIMP dark matter

    Full text link
    In existing dark matter models with global symmetries the relic abundance of dark matter is either equal to that of anti-dark matter (thermal WIMP), or vastly larger, with essentially no remaining anti-dark matter (asymmetric dark matter). By exploring the consequences of a primordial asymmetry on the coupled dark matter and anti-dark matter Boltzmann equations we find large regions of parameter space that interpolate between these two extremes. Interestingly, this new asymmetric WIMP framework can accommodate a wide range of dark matter masses and annihilation cross sections. The present-day dark matter population is typically asymmetric, but only weakly so, such that indirect signals of dark matter annihilation are not completely suppressed. We apply our results to existing models, noting that upcoming direct detection experiments will constrain a large region of the relevant parameter space.Comment: 32 pages, 6 figures, updated references, updated XENON100 bounds, typo in figure caption correcte

    Noether Symmetry Approach in "Cosmic Triad" Vector Field Scenario

    Full text link
    To realize the accelerations in the early and late periods of our universe, we need to specify potentials for the dominant fields. In this paper, by using the Noether symmetry approach, we try to find suitable potentials in the "cosmic triad" vector field scenario. Because the equation of state parameter of dark energy has been constrained in the range of 1.21ω0.89-1.21\leq \omega\leq -0.89 by observations, we derive the Noether conditions for the vector field in quintessence, phantom and quintom models, respectively. In the first two cases, constant potential solutions have been obtained. What is more, a fast decaying point-like solution with power-law potential is also found for the vector field in quintessence model. For the quintom case, we find an interesting constraint C~Vp=CVq\tilde{C}V_{p}'=-CV_{q}' on the field potentials, where CC and C~\tilde{C} are constants related to the Noether symmetry.Comment: 15 pages, no figures, accepted by Classical and Quantum Gravity

    Two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the B-LSSM

    Full text link
    The rare decays BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- are important to research new physics beyond standard model. In this work, we investigate two loop electroweak corrections to BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^- in the minimal supersymmetric extension of the SM with local BLB-L gauge symmetry (B-LSSM), under a minimal flavor violating assumption for the soft breaking terms. In this framework, new particles and new definition of squarks can affect the theoretical predictions of these two processes, with respect to the MSSM. Considering the constraints from updated experimental data, the numerical results show that the B-LSSM can fit the experimental data for the branching ratios of BˉXsγ\bar B\rightarrow X_s\gamma and Bs0μ+μB_s^0\rightarrow \mu^+\mu^-. The results of the rare decays also further constrain the parameter space of the B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ

    Einstein-aether as a quantum effective field theory

    Full text link
    The possibility that Lorentz symmetry is violated in gravitational processes is relatively unconstrained by experiment, in stark contrast with the level of accuracy to which Lorentz symmetry has been confirmed in the matter sector. One model of Lorentz violation in the gravitational sector is Einstein-aether theory, in which Lorentz symmetry is broken by giving a vacuum expectation value to a dynamical vector field. In this paper we analyse the effective theory for quantised gravitational and aether perturbations. We show that this theory possesses a controlled effective expansion within dimensional regularisation, that is, for any process there are a finite number of Feynman diagrams which will contribute to a given order of accuracy. We find that there is no log-running of the two-derivative phenomenological parameters, justifying the use of experimental constraints for these parameters obtained over many orders of magnitude in energy scale. Given the stringent experimental bounds on two-derivative Lorentz-violating operators, we estimate the size of matter Lorentz-violation which arises due to loop effects. This amounts to an estimation of the natural size of coefficients for Lorentz-violating dimension-six matter operators, which in turn can be used to obtain a new bound on the two-derivative parameters of this theory.Comment: 21 page

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Statistical Anisotropy from Anisotropic Inflation

    Get PDF
    We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).Comment: 32 pages, 5 figures, invited review for CQG, published versio

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Statistical Concepts in Testing of Dispersants

    No full text
    corecore