44,925 research outputs found
Single parameter testing application
Single parameter testing with growing exponential signals applied to servo loop controlling arm position on X-Y plotte
Lepton Mass Effects in Single Pion Production by Neutrinos
We reconsider the Feynman-Kislinger-Ravndal model applied to
neutrino-excitation of baryon resonances. The effects of lepton mass are
included, using the formalism of Kuzmin, Lyubushkin and Naumov. In addition we
take account of the pion-pole contribution to the hadronic axial vector
current. Application of this new formalism to the reaction nu(mu) + p --> mu +
Delta at E(nu) approx 1 GeV gives a suppressed cross section at small angles,
in agreement with the screening correction in Adler's forward scattering
theorem. Application to the process nu(tau) + p --> tau + Delta at E(nu) approx
7 GeV leads to the prediction of right-handed tau polarization for
forward-going leptons, in line with a calculation based on an isobar model. Our
formalism represents an improved version of the Rein-Sehgal model,
incorporating lepton mass effects in a manner consistent with PCAC.Comment: 14 pages, 5 figures. Typos in eq. 9 and 27 corrected. Numbers in
table I for coherent cross sections (RSA and RSC) corrected (normalization
error). Figs 3 and 4 changed accordingly. These corrections also apply to the
published version PRD 76, 113004 (2007
Calculation of W b bbar Production via Double Parton Scattering at the LHC
We investigate the potential to observe double parton scattering at the Large
Hadron Collider in p p -> W b bbar X -> l nu b bbar X at 7 TeV. Our analysis
tests the efficacy of several kinematic variables in isolating the double
parton process of interest from the single parton process and relevant
backgrounds for the first 10 inverse fb of integrated luminosity. These
variables are constructed to expose the independent nature of the two
subprocesses in double parton scattering, pp -> l nu X and pp -> b bbar X. We
use next-to-leading order perturbative predictions for the double parton and
single parton scattering components of W b bbar and for the pertinent
backgrounds. The next-to-leading order contributions are important for a proper
description of some of the observables we compute. We find that the double
parton process can be identified and measured with significance S/sqrt(B) ~ 10,
provided the double parton scattering effective cross section sigma_{eff} ~ 12
mb.Comment: 21 pages, 9 figures; v2: improved presentation and figures, version
published in Phys. Rev.
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Single parameter testing Quarterly report
Test signals, AC analysis, transfer function determination, and nonlinear components for single parameter testing of amplifie
Harmonic coordinate method for simulating generic singularities
This paper presents both a numerical method for general relativity and an
application of that method. The method involves the use of harmonic coordinates
in a 3+1 code to evolve the Einstein equations with scalar field matter. In
such coordinates, the terms in Einstein's equations with the highest number of
derivatives take a form similar to that of the wave equation. The application
is an exploration of the generic approach to the singularity for this type of
matter. The preliminary results indicate that the dynamics as one approaches
the singularity is locally the dynamics of the Kasner spacetimes.Comment: 5 pages, 4 figures, Revtex, discussion expanded, references adde
Single parameter testing, phase D Final report
Single parameter testing techniques for electronic measuring equipment and other component
Spin Dependence of Massive Lepton Pair Production in Proton-Proton Collisions
We calculate the transverse momentum distribution for the production of
massive lepton-pairs in longitudinally polarized proton-proton reactions at
collider energies within the context of perturbative quantum chromodynamics.
For values of the transverse momentum Q_T greater than roughly half the pair
mass Q, Q_T > Q/2, we show that the differential cross section is dominated by
subprocesses initiated by incident gluons, provided that the polarized gluon
density is not too small. Massive lepton-pair differential cross sections
should be a good source of independent constraints on the polarized gluon
density, free from the experimental and theoretical complications of photon
isolation that beset studies of prompt photon production. We provide
predictions for the spin-averaged and spin-dependent differential cross
sections as a function of Q_T at energies relevant for the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven, and we compare these with predictions for
real prompt photon production.Comment: 34 pages, RevTeX including 17 figures in .ps file
- …