4 research outputs found

    On alternative approaches to Lorentz violation in loop quantum gravity inspired models

    Full text link
    Recent claims point out that possible violations of Lorentz symmetry appearing in some semiclassical models of extended matter dynamics motivated by loop quantum gravity can be removed by a different choice of canonically conjugated variables. In this note we show that such alternative is inconsistent with the choice of variables in the underlying quantum theory together with the semiclassical approximation, as long as the correspondence principle is maintained. A consistent choice will violate standard Lorentz invariance. Thus, to preserve a relativity principle in this framework, the linear realization of Lorentz symmetry should be extended or superseded.Comment: 4 pages, revtex4, no figures, references adde

    New Observational Bounds to Quantum Gravity Signals

    Get PDF
    We consider a new set of effects arising from the quantum gravity corrections to the propagation of fields, associated with fluctuations of the spacetime geometry. Using already existing experimental data, we can put bounds on these effects that are more stringent by several orders of magnitude than those expected to be obtained in astrophysical observations. In fact these results can be already interpreted as questioning the whole scenario of linear (in lPl_P) corrections to the dispersion relations for free fields in Lorentz violating theories.Comment: Latex, to be published in PR

    Lorentz violating electrodynamics

    Full text link
    After summarizing the most interesting results in the calculation of synchrotron radiation in the Myers-Pospelov effective model for Lorentz invariance violating (LIV) electrodynamics, we present a general unified way of describing the radiation regime of LIV electrodynamics which include the following three different models : Gambini-Pullin, Ellis et al. and Myers-Pospelov. Such unification reduces to the standard approach of radiation in a dispersive and absortive (in general) medium with a given index of refraction. The formulation is presented up to second order in the LIV parameter and it is explicitly applied to the synchrotron radiation case.Comment: 11 pages, extended version of the talk given by L.F. Urrutia in the VI Mexican School: Approaches to Quantum Gravity, Playa del Carmen, Mexico, Nov. 2004. Minor chages in the text and added reference

    Radiation in Lorentz violating electrodynamics

    Full text link
    Synchrotron radiation is analyzed in the classical effective Lorentz invariance violating model of Myers-Pospelov. Within the full far-field approximation we compute the electric and magnetic fields, the angular distribution of the power spectrum and the total emitted power in the m-th harmonic, as well as the polarization. We find the appearance of rather unexpected and large amplifying factors, which go together with the otherwise negligible naive expansion parameter. This opens up the possibility of further exploring Lorentz invariance violations by synchrotron radiation measurements in astrophysical sources where these amplifying factors are important.Comment: Presented at the Second Mexican Meeting on Theoretical and Experimental Physics, El Colegio Nacional, Mexico City, 6-10 September 200
    corecore