28,125 research outputs found

    Anisotropic Electronic Structure of the Kondo Semiconductor CeFe2Al10 Studied by Optical Conductivity

    Full text link
    We report temperature-dependent polarized optical conductivity [σ(ω)\sigma(\omega)] spectra of CeFe2_2Al10_{10}, which is a reference material for CeRu2_2Al10_{10} and CeOs2_2Al10_{10} with an anomalous magnetic transition at 28 K. The σ(ω)\sigma(\omega) spectrum along the b-axis differs greatly from that in the acac-plane, indicating that this material has an anisotropic electronic structure. At low temperatures, in all axes, a shoulder structure due to the optical transition across the hybridization gap between the conduction band and the localized 4f4f states, namely cc-ff hybridization, appears at 55 meV. However, the gap opening temperature and the temperature of appearance of the quasiparticle Drude weight are strongly anisotropic indicating the anisotropic Kondo temperature. The strong anisotropic nature in both electronic structure and Kondo temperature is considered to be relevant the anomalous magnetic phase transition in CeRu2_2Al10_{10} and CeOs2_2Al10_{10}.Comment: 5 pages, 4 figure

    Observation of an optical non-Fermi-liquid behavior in the heavy fermion state of YbRh2_{2}Si2_{2}

    Full text link
    We report far-infrared optical properties of YbRh2_{2}Si2_{2} for photon energies down to 2 meV and temperatures 0.4 -- 300 K. In the coherent heavy quasiparticle state, a linear dependence of the low-energy scattering rate on both temperature and photon energy was found. We relate this distinct dynamical behavior different from that of Fermi liquid materials to the non-Fermi liquid nature of YbRh2_{2}Si2_{2} which is due to its close vicinity to an antiferromagnetic quantum critical point.Comment: 5 pages, 4 figures. submitte

    Electronic-Structure-Driven Magnetic Ordering in a Kondo Semiconductor CeOs2Al10

    Get PDF
    We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs2_2Al10_{10} across an anomalous antiferromagnetic ordering temperature (T0T_0) of 29 K, using optical conductivity spectra. The spectra along the aa- and cc-axes indicate that a cc-ff hybridization gap emerges from a higher temperature continuously across T0T_0. Along the b-axis, on the other hand, a different energy gap with a peak at 20 meV appears below 39 K, which is higher temperature than T0T_0, because of structural distortion. The onset of the energy gap becomes visible below T0T_0. Our observation reveals that the electronic structure as well as the energy gap opening along the b-axis due to the structural distortion induces antiferromagnetic ordering below T0T_0.Comment: 4 pages, 4 figure

    Stochastic delocalization of finite populations

    Full text link
    Heterogeneities in environmental conditions often induce corresponding heterogeneities in the distribution of species. In the extreme case of a localized patch of increased growth rates, reproducing populations can become strongly concentrated at the patch despite the entropic tendency for population to distribute evenly. Several deterministic mathematical models have been used to characterize the conditions under which localized states can form, and how they break down due to convective driving forces. Here, we study the delocalization of a finite population in the presence of number fluctuations. We find that any finite population delocalizes on sufficiently long time scales. Depending on parameters, however, populations may remain localized for a very long time. The typical waiting time to delocalization increases exponentially with both population size and distance to the critical wind speed of the deterministic approximation. We augment these simulation results by a mathematical analysis that treats the reproduction and migration of individuals as branching random walks subject to global constraints. For a particular constraint, different from a fixed population size constraint, this model yields a solvable first moment equation. We find that this solvable model approximates very well the fixed population size model for large populations, but starts to deviate as population sizes are small. The analytical approach allows us to map out a phase diagram of the order parameter as a function of the two driving parameters, inverse population size and wind speed. Our results may be used to extend the analysis of delocalization transitions to different settings, such as the viral quasi-species scenario

    Limitations on the extent of off-center displacements in TbMnO3 from EXAFS measurements

    Full text link
    We present EXAFS data at the Mn K and Tb L3 edges that provide upper limits on the possible displacements of any atoms in TbMnO3. The displacements must be less than 0.005-0.01A for all atoms which eliminates the possibility of moderate distortions (0.02A) with a small c-axis component, but for which the displacements in the ab plane average to zero. Assuming the polarization arises from a displacement of the O2 atoms along the c-axis, the measured polarization then leads to an O2 displacement that is at least 6X10^{-4}A, well below our experimental limit. Thus a combination of the EXAFS and the measured electrical polarization indicate that the atomic displacements likely lie in the range 6X10^{-4} - 5X10^{-3}A.Comment: submitted to PRB; 11 pages (preprint form) 7 figure

    Nucleation for one-dimensional long-range Ising models

    Get PDF
    In this note we study metastability phenomena for a class of long-range Ising models in one-dimension. We prove that, under suitable general conditions, the configuration -1 is the only metastable state and we estimate the mean exit time. Moreover, we illustrate the theory with two examples (exponentially and polynomially decaying interaction) and we show that the critical droplet can be macroscopic or mesoscopic, according to the value of the external magnetic field.Comment: 15 pages, 3 figure

    Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2

    Full text link
    We report the temperature- and magnetic-field-dependent optical conductivity spectra of the heavy electron metal YbIr2_2Si2_2. Upon cooling below the Kondo temperature (TKT_{\rm K}), we observed a typical charge dynamics that is expected for a formation of a coherent heavy quasiparticle state. We obtained a good fitting of the Drude weight of the heavy quasiparticles by applying a modified Drude formula with a photon energy dependence of the quasiparticle scattering rate that shows a similar power-law behavior as the temperature dependence of the electrical resistivity. By applying a magnetic field of 6T below TKT_{\rm K}, we found a weakening of the effective dynamical mass enhancement by about 12% in agreement with the expected decrease of the 4f4f-conduction electron hybridization on magnetic field.Comment: 5 pages, 4 figures. to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    Quasi-particle scattering and protected nature of topological states in a parent topological insulator Bi2_2Se3_3

    Full text link
    We report on angle resolved photoemission spectroscopic studies on a parent topological insulator (TI), Bi2_2Se3_3. The line width of the spectral function (inverse of the quasi-particle lifetime) of the topological metallic (TM) states shows an anomalous behavior. This behavior can be reasonably accounted for by assuming decay of the quasi-particles predominantly into bulk electronic states through electron-electron interaction and defect scattering. Studies on aged surfaces reveal that topological metallic states are very much unaffected by the potentials created by adsorbed atoms or molecules on the surface, indicating that topological states could be indeed protected against weak perturbations.Comment: accepted for publication in Phys. Rev. B(R
    • …
    corecore