70 research outputs found
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-59
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-59. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/ thermal protection system conditions and integrated photographic analysis of shuttle mission STS-59, and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-56
The Debris Team developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from JSC, MSFC, and Rockwell International--Downey are also included in this document to provide an integrated assessment of the mission
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-57
A Debris/Ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-57. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-57, and the resulting effect on the Space Shuttle Program are documented
Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-67
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-67. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection (TPS) conditions and integrated photographic analysis of Shuttle mission STS-67, and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-64 on 9 August 1994
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-62
A pre-launch debris inspection of the pad and Shuttle vehicle was conducted on 2 March 1994. The detailed walkdown of Launch Pad 39B and MLP-1 also included the primary flight elements OV-102 Columbia (16th flight), ET-62 (LWT 55), and BI-064 SRB's. There were no significant facility or vehicle anomalies. After the launch on March 4th, a debris inspection of Pad 39B was performed. Damage to the pad overall was minimal. On-orbit photographs taken by the flight crew and two films from the ET/ORB umbilical cameras of the External Tank after separation from the Orbiter revealed no major damage or lost flight hardware that would have been a safety of flight concern. Orbiter performance on final approach appeared normal. Infrared imagery of landing gear deployment showed the loss of thermal barrier from the nose gear wheel well. The missing thermal barrier material was not recovered. The Solid Rocket Boosters were inspected at Hanger AF after retrieval. Both frustums had a combined total of 44 MSA-2 debonds over fasteners. Significant amounts of BTA had been applied to closeouts on the RH frustum, forward skirt, and aft skirt. Hypalon paint was blistered/missing over the areas were the BTA had been applied. The underlying BTA was not sooted (IFA STS-62-B-1). Investigation of this condition has concluded there was insufficient heat rates to cause blistering of the Hypalon until late in the ascent phase. A post landing inspection of OV-102 was conducted after the landing at KSC. The Orbiter TPS sustained a total of 97 hits, of which 16 had a major dimension of 1 inch or larger. The Orbiter lower surface had a total of 36 hits, of which 7 had a major dimension of 1 inch or larger. Based on these numbers and comparison to statistics from previous missions of similar configuration, both the total number of debris hits and the number of hits 1 inch or larger was less than average. Six thermal barriers, total size approximately 36 in. x 3 in. x 1.5 in., and one corner tile piece 4 in. x 4 in., were missing from the nose landing gear doors. Runway infrared cameras recorded these objects falling from the Orbiter when the nose landing gear doors were opened on final approach. A search of the area under the flight path failed to recover the missing thermal batteries, which may be submerged in the large body of water south of the runway. The cause for the loss of the material was attributed to the way the substrate was prepared for bonding at the vendor. Orbiter post landing microchemical sample results revealed a variety of residuals in the Orbiter window samples. These were attributed to SRB BSM exhaust, Orbiter TPS, window protective covers and processing, natural landing site products, and paints/primers from various sources. The residual sampling data do not indicate a single source of damaging debris and all of these materials have been documented previously in analyses for post landing sample reports. Data from residual sampling also showed no trends when compared to previous mission data. A total of ten Post Launch Anomalies, including one IFA, were observed during the STS-62 mission assessment
- …