33 research outputs found
Partially Ordered Two-way B\"uchi Automata
We introduce partially ordered two-way B\"uchi automata and characterize
their expressive power in terms of fragments of first-order logic FO[<].
Partially ordered two-way B\"uchi automata are B\"uchi automata which can
change the direction in which the input is processed with the constraint that
whenever a state is left, it is never re-entered again. Nondeterministic
partially ordered two-way B\"uchi automata coincide with the first-order
fragment Sigma2. Our main contribution is that deterministic partially ordered
two-way B\"uchi automata are expressively complete for the first-order fragment
Delta2. As an intermediate step, we show that deterministic partially ordered
two-way B\"uchi automata are effectively closed under Boolean operations.
A small model property yields coNP-completeness of the emptiness problem and
the inclusion problem for deterministic partially ordered two-way B\"uchi
automata.Comment: The results of this paper were presented at CIAA 2010; University of
Stuttgart, Computer Scienc
Implications of quantum automata for contextuality
We construct zero-error quantum finite automata (QFAs) for promise problems
which cannot be solved by bounded-error probabilistic finite automata (PFAs).
Here is a summary of our results:
- There is a promise problem solvable by an exact two-way QFA in exponential
expected time, but not by any bounded-error sublogarithmic space probabilistic
Turing machine (PTM).
- There is a promise problem solvable by an exact two-way QFA in quadratic
expected time, but not by any bounded-error -space PTMs in
polynomial expected time. The same problem can be solvable by a one-way Las
Vegas (or exact two-way) QFA with quantum head in linear (expected) time.
- There is a promise problem solvable by a Las Vegas realtime QFA, but not by
any bounded-error realtime PFA. The same problem can be solvable by an exact
two-way QFA in linear expected time but not by any exact two-way PFA.
- There is a family of promise problems such that each promise problem can be
solvable by a two-state exact realtime QFAs, but, there is no such bound on the
number of states of realtime bounded-error PFAs solving the members this
family.
Our results imply that there exist zero-error quantum computational devices
with a \emph{single qubit} of memory that cannot be simulated by any finite
memory classical computational model. This provides a computational perspective
on results regarding ontological theories of quantum mechanics \cite{Hardy04},
\cite{Montina08}. As a consequence we find that classical automata based
simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently
powerful to simulate quantum contextuality. We conclude by highlighting the
interplay between results from automata models and their application to
developing a general framework for quantum contextuality.Comment: 22 page
Translation from Classical Two-Way Automata to Pebble Two-Way Automata
We study the relation between the standard two-way automata and more powerful
devices, namely, two-way finite automata with an additional "pebble" movable
along the input tape. Similarly as in the case of the classical two-way
machines, it is not known whether there exists a polynomial trade-off, in the
number of states, between the nondeterministic and deterministic pebble two-way
automata. However, we show that these two machine models are not independent:
if there exists a polynomial trade-off for the classical two-way automata, then
there must also exist a polynomial trade-off for the pebble two-way automata.
Thus, we have an upward collapse (or a downward separation) from the classical
two-way automata to more powerful pebble automata, still staying within the
class of regular languages. The same upward collapse holds for complementation
of nondeterministic two-way machines.
These results are obtained by showing that each pebble machine can be, by
using suitable inputs, simulated by a classical two-way automaton with a linear
number of states (and vice versa), despite the existing exponential blow-up
between the classical and pebble two-way machines
On Measuring Non-Recursive Trade-Offs
We investigate the phenomenon of non-recursive trade-offs between
descriptional systems in an abstract fashion. We aim at categorizing
non-recursive trade-offs by bounds on their growth rate, and show how to deduce
such bounds in general. We also identify criteria which, in the spirit of
abstract language theory, allow us to deduce non-recursive tradeoffs from
effective closure properties of language families on the one hand, and
differences in the decidability status of basic decision problems on the other.
We develop a qualitative classification of non-recursive trade-offs in order to
obtain a better understanding of this very fundamental behaviour of
descriptional systems
Reversal hierarchies for small 2DFAs
A two-way deterministic finite automaton with r(n) reversals performs 64\u2009r (n) input head reversals on every n-long input. Let 2D[r(n)] be all families of problems solvable by such automata of size polynomial in the index of the family. Then the reversal hierarchy 2D[0] 86 2D[1] 86 2D[2] 86\u2009 ef is strict, but 2D[O(1)] = 2D[o(n)]. Moreover, the inner-reversal hierarchy 2D(0) 86 2D(1) 86 2D(2) 86\u2009 ef , where now the bound is only for reversals strictly between the input end-markers, is also strict