33 research outputs found

    Partially Ordered Two-way B\"uchi Automata

    Full text link
    We introduce partially ordered two-way B\"uchi automata and characterize their expressive power in terms of fragments of first-order logic FO[<]. Partially ordered two-way B\"uchi automata are B\"uchi automata which can change the direction in which the input is processed with the constraint that whenever a state is left, it is never re-entered again. Nondeterministic partially ordered two-way B\"uchi automata coincide with the first-order fragment Sigma2. Our main contribution is that deterministic partially ordered two-way B\"uchi automata are expressively complete for the first-order fragment Delta2. As an intermediate step, we show that deterministic partially ordered two-way B\"uchi automata are effectively closed under Boolean operations. A small model property yields coNP-completeness of the emptiness problem and the inclusion problem for deterministic partially ordered two-way B\"uchi automata.Comment: The results of this paper were presented at CIAA 2010; University of Stuttgart, Computer Scienc

    Implications of quantum automata for contextuality

    Full text link
    We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error o(loglogn) o(\log \log n) -space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem solvable by a Las Vegas realtime QFA, but not by any bounded-error realtime PFA. The same problem can be solvable by an exact two-way QFA in linear expected time but not by any exact two-way PFA. - There is a family of promise problems such that each promise problem can be solvable by a two-state exact realtime QFAs, but, there is no such bound on the number of states of realtime bounded-error PFAs solving the members this family. Our results imply that there exist zero-error quantum computational devices with a \emph{single qubit} of memory that cannot be simulated by any finite memory classical computational model. This provides a computational perspective on results regarding ontological theories of quantum mechanics \cite{Hardy04}, \cite{Montina08}. As a consequence we find that classical automata based simulation models \cite{Kleinmann11}, \cite{Blasiak13} are not sufficiently powerful to simulate quantum contextuality. We conclude by highlighting the interplay between results from automata models and their application to developing a general framework for quantum contextuality.Comment: 22 page

    Translation from Classical Two-Way Automata to Pebble Two-Way Automata

    Get PDF
    We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional "pebble" movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic two-way machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines

    On Measuring Non-Recursive Trade-Offs

    Full text link
    We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non-recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems

    Reversal hierarchies for small 2DFAs

    No full text
    A two-way deterministic finite automaton with r(n) reversals performs 64\u2009r (n) input head reversals on every n-long input. Let 2D[r(n)] be all families of problems solvable by such automata of size polynomial in the index of the family. Then the reversal hierarchy 2D[0] 86 2D[1] 86 2D[2] 86\u2009 ef is strict, but 2D[O(1)] = 2D[o(n)]. Moreover, the inner-reversal hierarchy 2D(0) 86 2D(1) 86 2D(2) 86\u2009 ef , where now the bound is only for reversals strictly between the input end-markers, is also strict

    Optimal 2DFA Algorithms for One-Way Liveness on Two and Three Symbols

    No full text
    corecore