335,410 research outputs found
Long period perturbations of earth satellite orbits
All the equations involved in extending the PS phi solution to include the long periodic and second order secular effects of the zonal harmonics are presented. Topics covered include DSphi elements and relations for their conconical transformation into the PS phi elements; the solution algorithm based on the Von Zeipel method; and the elimination of long periodic terms and analytical integration of primed variables. The equations were entered into the ASOP program, checked out, and verified. Comparisons with numerical integrations show the long period theory to be accurate within several meters after 800 revolutions
Control strategy for a dual-arm maneuverable space robot
A simple strategy for the attitude control and arm coordination of a maneuverable space robot with dual arms is proposed. The basic task for the robot consists of the placement of marked rigid solid objects with specified pairs of gripping points and a specified direction of approach for gripping. The strategy consists of three phases each of which involves only elementary rotational and translational collision-free maneuvers of the robot body. Control laws for these elementary maneuvers are derived by using a body-referenced dynamic model of the dual-arm robot
Design of a smart turning tool with application to in-process cutting force measurement in ultraprecision and micro cutting
In modern micromachining, there is a need to measure and monitor certain machining process parameters in process so as to detect tool wear in real time, to optimize the process parameters setup, and to render the machining process some level of smartness and intelligence. This paper presents the innovative design of a smart turning tool using two pieces of piezoelectric films to measure cutting and feed force in real time. The tool was tested on its performance through the calibration and cutting trials against the commercial dynamometer. The results show the smart turning tool has achieved the performance as designed
Detection of Minimum-Ionizing Particles and Nuclear Counter Effect with Pure BGO and BSO Crystals with Photodiode Read-out
Long BGO (Bismuth Germanate) and BSO (Bismuth Silicate) crystals coupled with
silicon photodiodes have been used to detect minimum-ionizing particles(MIP).
With a low noise amplifier customized for this purpose, the crystals can detect
MIPs with an excellent signal-to-noise ratio. The NCE(Nuclear Counter Effect}
is also clearly observed and measured. Effect of full and partial wrapping of a
reflector around the crystal on light collection is also studied.Comment: 18 pages, including 5 figures; LaTeX and EP
Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications
In this research, we present a simple and cost effective soft lithographic
process to fabricate PLA scaffolds for tissue engineering. In which, the
negative photoresist JSR THB-120N was spun on a glass subtract followed by
conventional UV lithographic processes to fabricate the master to cast the PDMS
elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode
release such that the PLA scaffold can be easily peeled off. The PLA precursor
solution was then cast onto the PDMS mold to form the PLA microstructures.
After evaporating the solvent, the PLA microstructures can be easily peeled off
from the PDMS mold. Experimental results show that the desired microvessels
scaffold can be successfully transferred to the biodegradable polymer PLA.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Extraction of nuclear matter properties from nuclear masses by a model of equation of state
The extraction of nuclear matter properties from measured nuclear masses is
investigated in the energy density functional formalism of nuclei. It is shown
that the volume energy and the nuclear incompressibility depend
essentially on , whereas the symmetry energy
and the density symmetry coefficient as well as symmetry incompressibility
depend essentially on , where
, and are the
neutron and proton chemical potentials respectively, the nuclear energy,
and the Coulomb energy. The obtained symmetry energy is ,
while other coefficients are uncertain within ranges depending on the model of
nuclear equation of state.Comment: 12 pages and 7 figure
S-wave quantum entanglement in a harmonic trap
We analyze the quantum entanglement between two interacting atoms trapped in
a spherical harmonic potential. At ultra-cold temperature, ground state
entanglement is generated by the dominated s-wave interaction. Based on a
regularized pseudo-potential Hamiltonian, we examine the quantum entanglement
by performing the Schmidt decomposition of low-energy eigenfunctions. We
indicate how the atoms are paired and quantify the entanglement as a function
of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
A comparative analysis of the value of information in a continuous time market model with partial information: the cases of log-utility and CRRA
We study the question what value an agent in a generalized Black-Scholes model with partial information attributes to the complementary information. To do this, we study the utility maximization problems from terminal wealth for the two cases partial information and full information. We assume that the drift term of the risky asset is a dynamic process of general linear type and that the two levels of observation correspond to whether this drift term is observable or not. Applying methods from stochastic filtering theory we derive an analytical tractable formula for the value of information in the case of logarithmic utility. For the case of constant relative risk aversion (CRRA) we derive a semianalytical formula, which uses as an input the numerical solution of a system of ODEs. For both cases we present a comparative analysis
- …