794 research outputs found
Two-component Bose-Einstein Condensates with Large Number of Vortices
We consider the condensate wavefunction of a rapidly rotating two-component
Bose gas with an equal number of particles in each component. If the
interactions between like and unlike species are very similar (as occurs for
two hyperfine states of Rb or Na) we find that the two components
contain identical rectangular vortex lattices, where the unit cell has an
aspect ratio of , and one lattice is displaced to the center of the
unit cell of the other. Our results are based on an exact evaluation of the
vortex lattice energy in the large angular momentum (or quantum Hall) regime.Comment: 4 pages, 2 figures, RevTe
Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases
The Bose-Einstein condensates of alkali atomic gases are spinor fields with
local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid
velocity (or gauge field) generated by the Berry phase of the
spin field. In ``static" traps, splits the degeneracy of the
harmonic energy levels, breaks the inversion symmetry of the vortex nucleation
frequency , and can lead to {\em vortex ground states}. The
inversion symmetry of , however, is not broken in ``dynamic"
traps. Rotations of the atom cloud can be generated by adiabatic effects
without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful
reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for
Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations
We study the onset of patterns in vertically oscillated layers of
frictionless dissipative particles. Using both numerical solutions of continuum
equations to Navier-Stokes order and molecular dynamics (MD) simulations, we
find that standing waves form stripe patterns above a critical acceleration of
the cell. Changing the frequency of oscillation of the cell changes the
wavelength of the resulting pattern; MD and continuum simulations both yield
wavelengths in accord with previous experimental results. The value of the
critical acceleration for ordered standing waves is approximately 10% higher in
molecular dynamics simulations than in the continuum simulations, and the
amplitude of the waves differs significantly between the models. The delay in
the onset of order in molecular dynamics simulations and the amplitude of noise
below this onset are consistent with the presence of fluctuations which are
absent in the continuum theory. The strength of the noise obtained by fit to
Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in
fluid convection experiments, and is comparable to the noise found in
experiments with oscillated granular layers and in recent fluid experiments on
fluids near the critical point. Good agreement is found between the mean field
value of onset from the Swift-Hohenberg fit and the onset in continuum
simulations. Patterns are compared in cells oscillated at two different
frequencies in MD; the layer with larger wavelength patterns has less noise
than the layer with smaller wavelength patterns.Comment: Published in Physical Review
Inherent Rheology of a Granular Fluid in Uniform Shear Flow
In contrast to normal fluids, a granular fluid under shear supports a steady
state with uniform temperature and density since the collisional cooling can
compensate locally for viscous heating. It is shown that the hydrodynamic
description of this steady state is inherently non-Newtonian. As a consequence,
the Newtonian shear viscosity cannot be determined from experiments or
simulation of uniform shear flow. For a given degree of inelasticity, the
complete nonlinear dependence of the shear viscosity on the shear rate requires
the analysis of the unsteady hydrodynamic behavior. The relationship to the
Chapman-Enskog method to derive hydrodynamics is clarified using an approximate
Grad's solution of the Boltzmann kinetic equationComment: 10 pages, 4 figures; substantially enlarged version; to be published
in PR
Transport Coefficients for Granular Media from Molecular Dynamics Simulations
Under many conditions, macroscopic grains flow like a fluid; kinetic theory
pred icts continuum equations of motion for this granular fluid. In order to
test the theory, we perform event driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat
bath. Even for strong dissipation, high densities, and small numbers of
particles, we find that continuum theory describes the system well. With a bath
that heats the gas homogeneously, strong velocity correlations produce a
slightly smaller energy loss due to inelastic collisions than that predicted by
kinetic theory. With an inhomogeneous heat bath, thermal or velocity gradients
are induced. Determination of the resulting fluxes allows calculation of the
thermal conductivity and shear viscosity, which are compared to the predictions
of granular kinetic theory, and which can be used in continuum modeling of
granular flows. The shear viscosity is close to the prediction of kinetic
theory, while the thermal conductivity can be overestimated by a factor of 2;
in each case, transport is lowered with increasing inelasticity.Comment: 14 pages, 17 figures, 39 references, submitted to PRE feb 199
Cytokine Response Patterns in Severe Pandemic 2009 H1N1 and Seasonal Influenza among Hospitalized Adults
BACKGROUND: Studying cytokine/chemokine responses in severe influenza infections caused by different virus subtypes may improve understanding on pathogenesis. METHODS: Adults hospitalized for laboratory-confirmed seasonal and pandemic 2009 A/H1N1 (pH1N1) influenza were studied. Plasma concentrations of 13 cytokines/chemokines were measured at presentation and then serially, using cytometric-bead-array with flow-cytometry and ELISA. PBMCs from influenza patients were studied for cytokine/chemokine expression using ex-vivo culture (Whole Blood Assay,±PHA/LPS stimulation). Clinical variables were prospectively recorded and analyzed. RESULTS: 63 pH1N1 and 53 seasonal influenza patients were studied. pH1N1 patients were younger (mean±S.D. 42.8±19.2 vs 70.5±16.7 years), and fewer had comorbidities. Respiratory/cardiovascular complications were common in both groups (71.4% vs 81.1%), although severe pneumonia with hypoxemia (54.0% vs 28.3%) and ICU admissions (25.4% vs 1.9%) were more frequent with pH1N1. Hyperactivation of the proinflammatory cytokines IL-6, CXCL8/IL-8, CCL2/MCP-1 and sTNFR-1 was found in pH1N1 pneumonia (2-15 times normal) and in complicated seasonal influenza, but not in milder pH1N1 infections. The adaptive-immunity (Th1/Th17)-related CXCL10/IP-10, CXCL9/MIG and IL-17A however, were markedly suppressed in severe pH1N1 pneumonia (2-27 times lower than seasonal influenza; P-values<0.01). This pattern was further confirmed with serial measurements. Hypercytokinemia tended to be sustained in pH1N1 pneumonia, associated with a slower viral clearance [PCR-negativity: day 3-4, 55% vs 85%; day 6-7, 67% vs 100%]. Elevated proinflammatory cytokines, particularly IL-6, predicted ICU admission (adjusted OR 12.6, 95%CI 2.6-61.5, per log(10)unit increase; P = 0.002), and correlated with fever, tachypnoea, deoxygenation, and length-of-stay (Spearman's rho, P-values<0.01) in influenza infections. PBMCs in seasonal influenza patients were activated and expressed cytokines ex vivo (e.g. IL-6, CXCL8/IL-8, CCL2/MCP-1, CXCL10/IP-10, CXCL9/MIG); their 'responsiveness' to stimuli was shown to change dynamically during the illness course. CONCLUSIONS: A hyperactivated proinflammatory, but suppressed adaptive-immunity (Th1/Th17)-related cytokine response pattern was found in severe pH1N1 pneumonia, different from seasonal influenza. Cytokine/immune-dysregulation may be important in its pathogenesis
Measurement invariance of the Functional Assessment of Cancer Therapy—Colorectal quality-of-life instrument among modes of administration
OBJECTIVES: To test for the measurement invariance of the Functional Assessment of Cancer Therapy—Colorectal (FACT-C) in patients with colorectal neoplasms between two modes of administration (self- and interviewer administrations). It is important to establish the measurement invariance of the FACT-C across different modes of administration to ascertain whether it is valid to pool FACT-C data collected by different modes or to assess each group separately. METHODS: A cross-sectional sample of 391 Chinese patients with colorectal neoplasms was recruited from specialist outpatient clinics between September 2009 and July 2010. Confirmatory factor analysis (CFA) was used to test the original five-factor model of the FACT-C on data collected by self- and interviewer administrations in single-group analysis. Multiple-group CFA was then used to compare the factor structure between the two modes of administration using chi-square tests and other goodness-of-fit statistics. RESULTS: The hypothesized five-factor model of FACT-C demonstrated good fit in each group. Configural invariance and metric invariance were fully supported in multiple-group CFA. Some item intercepts and their corresponding error variances were not identical between administration groups, suggesting evidence of partial strict factorial invariance. CONCLUSIONS: Our results confirmed that the five-factor structure of FACT-C was invariant in Chinese patients using both self- and interviewer administrations. It is appropriate to pool or compare data in the emotional well-being and colorectal cancer subscale scores collected by both administrations. Measurement invariance in three items, one from each of the other subscales, may be contaminated by response bias between modes of administration
Local and non-local equivalent potentials for p-12C scattering
A Newton-Sabatier fixed energy inversion scheme has been used to equate
inherently non-local p-C potentials at a variety of energies to pion
threshold, with exactly phase equivalent local ones. Those energy dependent
local potentials then have been recast in the form of non-local Frahn-Lemmer
interactions.Comment: 15 pages plus 9 figures submitted to Phys. Rev.
Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases
It is shown that the hydrodynamic modes of a dilute granular gas of inelastic
hard spheres can be identified, and calculated in the long wavelength limit.
Assuming they dominate at long times, formal expressions for the Navier-Stokes
transport coefficients are derived. They can be expressed in a form that
generalizes the Green-Kubo relations for molecular systems, and it is shown
that they can also be evaluated by means of -particle simulation methods.
The form of the hydrodynamic modes to zeroth order in the gradients is used to
detect the presence of inherent velocity correlations in the homogeneous
cooling state, even in the low density limit. They manifest themselves in the
fluctuations of the total energy of the system. The theoretical predictions are
shown to be in agreement with molecular dynamics simulations. Relevant related
questions deserving further attention are pointed out
Quantum Melting and Absence of Bose-Einstein Condensation in Two-Dimensional Vortex Matter
We demonstrate that quantum fluctuations suppress Bose-Einstein condensation
of quasi-two-dimensional bosons in a rapidly-rotating trap. Our conclusions
rest in part on an effective-Lagrangian description of the triangular vortex
lattice, and in part on microscopic Bogoliubov equations in the rapid-rotation
limit. We obtain analytic expressions for the collective-excitation dispersion,
which, in a rotating system, is quadratic rather than linear. Our estimates for
the boson filling factor at which the vortex lattice melts at zero temperature
due to quantum fluctuations are consistent with recent exact-diagonalization
calculations.Comment: 4 pages, 1 figures, version to appear in Phys. Rev. Let
- …