24,620 research outputs found

    Are the Nuclei of Seyfert 2 Galaxies Viewed Face-On?

    Full text link
    We show from modeling the Fe Kalpha line in the ASCA spectra of four X-ray bright narrow emission line galaxies (Seyfert types 1.9 and 2) that two equally viable physical models can describe the observed line profile. The first is discussed by Turner et al. (1998) and consists of emission from a nearly pole-on accretion disk. The second, which is statistically preferred, is a superposition of emission from an accretion disk viewed at an intermediate inclination of about 48 degrees and a distinct, unresolved feature that presumably originates some distance from the galaxy nucleus. The intermediate inclination is entirely consistent with unified schemes and our findings challenge recent assertions that Seyfert 2 galaxies are preferentially viewed with their inner regions face-on. We derive mean equivalent widths for the narrow and disk lines of =60 eV and = 213 eV, respectively. The X-ray data are well described by a geometry in which our view of the active nucleus intersects and is blocked by the outer edges of the obscuring torus, and therefore do not require severe misalignments between the accretion disk and the torus.Comment: 19 pages, 3 postscript figures. Accepted for publication in ApJ

    A powerful and highly variable off-nuclear X-ray source in the composite starburst/Seyfert 2 galaxy NGC 4945

    Get PDF
    We report on a powerful and variable off-nuclear X-ray source in the nearby spiral galaxy NGC 4945. Two ROSAT PSPC observations show the source to brighten in 0.5--2.0 keV flux by a factor of about 9 on a time-scale of 11 months or less. It is seen by ASCA about one month after the second PSPC pointing, and is seen to have dimmed by a factor of > 7 in a ROSAT HRI pointing about one year after the second PSPC pointing. Its maximum observed 0.8--2.5 keV luminosity is about 8E38 erg/s, making it brighter than any known persistent X-ray binary in the Milky Way. Its total X-ray luminosity is probably larger than 1.2E39 erg/s. The observed variability argues against a superbubble interpretation, and the off-nuclear position argues against a low-luminosity active galactic nucleus. The source is therefore probably either an ultra-powerful X-ray binary or an ultra-powerful supernova remnant. Optical monitoring has not identified any supernovae in NGC 4945 during the time of the X-ray observations, and any supernova would have had to have been either very highly absorbed or intrinsically optically faint.Comment: 5 pages, uuencoded compressed tar file, MNRAS in pres

    On the lack of X-ray iron line reverberation in MCG-6-30-15: Implications for the black hole mass and accretion disk structure

    Get PDF
    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverberation and exclude reverberation delays in the range 0.5-50ksec. This extends the conclusions of Lee et al. and suggests that the iron line flux remains constant on timescales as short as 0.5ksec. The large black hole mass (>10^8Msun) naively suggested by the constancy of the iron line flux is rejected on other grounds. We suggest that the black hole in MCG-6-30-15 has a mass of M_BH~10^6-10^7Msun and that changes in the ionization state of the disk may produce the puzzling spectral variability. Finally, it is found that the 8-15keV band lags the 2-4keV band by 50-100s. This result is used to place constraints on the size and geometry of the Comptonizing medium responsible for the hard X-ray power-law in this AGN.Comment: 11 pages, 13 postscript figures. Accepted for publication in Ap

    Implications of the X-ray Variability for the Mass of MCG-6-30-15

    Get PDF
    The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time scales. We study the \aproxlt 3 day time scale variability using a set of simultaneous archival observations that were obtained from \rxte and the {\it Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\ observations span nearly 10610^6 sec and indicate that the X-ray Fourier Power Spectral Density has an rms variability of 16%, is flat from approximately 10^{-6} - 10^{-5} Hz, and then steepens into a power law ∝f−α\propto f^{-\alpha} with \alpha\aproxgt 1. A further steepening to α≈2\alpha \approx 2 occurs between 10^{-4}-10^{-3} Hz. The shape and rms amplitude are comparable to what has been observed in \ngc and \cyg, albeit with break frequencies that differ by a factor of 10^{-2} and 10^{4}, respectively. If the break frequencies are indicative of the central black hole mass, then this mass may be as low as 106M⊙10^6 {\rm M}_\odot. An upper limit of ∌2\sim 2 ks for the relative lag between the 0.5-2 keV \asca band compared to the 8-15 keV \rxte band was also found. Again by analogy with \ngc and \cyg, this limit is consistent with a relatively low central black hole mass.Comment: 5 pages, 3 figures, LaTeX, uses emulateapj.sty and apjfonts.sty, revised version, accepted for publication in ApJ Letter

    An RXTE Observation of the Seyfert 1 Galaxy MCG-6-30-15 : X-ray Reflection and the Iron Abundance

    Get PDF
    We report on a 50 ks observation of the bright Seyfert 1 galaxy MCG--6-30-15 with the Rossi X-ray Timing Explorer. The data clearly show the broad fluorescent iron line (equivalent width ~ 250 eV), and the Compton reflection continuum at higher energies. A comparison of the iron line and the reflection continuum has enabled us to constrain reflective fraction and the elemental abundances in the accretion disk. Temporal studies provide evidence that spectral variability is due to changes in both the amount of reflection seen and the properties of the primary X-ray source itself.Comment: 6 pages, Late

    Thermoradiation inactivation of naturally occurring organisms in soil

    Get PDF
    Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization

    On broad iron K-alpha lines in Seyfert 1 galaxies

    Full text link
    The X-ray spectrum obtained by Tanaka et al from a long observation of the active galaxy MCG−6−30−15-6-30-15 shows a broad iron Kα\alpha line skewed to low energies. The simplest interpretation of the shape of the line is that it is due to doppler and gravitational redshifts from the inner parts of a disk about a massive black hole. Similarly broad lines are evident in shorter observations of several other active galaxies. In this paper we investigate other line broadening and skewing mechanisms such as Comptonization in cold gas and doppler shifts from outflows. We have also fitted complex spectral models to the data of MCG−6−30−15-6-30-15 to see whether the broad skewed line can be mimicked well by other absorption or emission features. No satisfactory mechanism or spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Iron fluorescence from within the innermost stable orbit of black hole accretion disks

    Get PDF
    The fluorescent iron Ka line is a powerful observational probe of the inner regions of black holes accretion disks. Previous studies have assumed that only material outside the radius of marginal stability can contribute to the observed line emission. Here, we show that fluorescence by material inside the radius of marginal stability, which is in the process of spiralling towards the event horizon, can have a observable influence on the iron line profile and equivalent width. For concreteness, we consider the case of a geometrically thin accretion disk, around a Schwarzschild black hole, in which fluorescence is excited by an X-ray source placed at some height above the disk and on the axis of the disk. Fully relativistic line profiles are presented for various source heights and efficiencies. It is found that the extra line flux generally emerges in the extreme red wing of the iron line, due to the large gravitational redshift experienced by photons from the region within the radius of marginal stability. We apply our models to the variable iron line seen in the ASCA spectrum of the Seyfert nucleus MCG-6-30-15. It is found that the change in the line profile, equivalent width, and continuum normalization, can be well explained as being due to a change in the height of the source above the disk. We discuss the implications of these results for distinguishing rapidly-rotating black holes from slowly rotating holes using iron line diagnostics.Comment: 20 pages, LaTeX. Accepted for publication in Astrophysical Journal. Figures 3 to 7 replaced with corrected versions (previous figures affected by calculational error). Some changes in the best fitting parameter
    • 

    corecore