109,545 research outputs found
Absolute and differential measurement of water vapor supersaturation using a commercial thin-film sensor
We describe a technique for measuring the water vapor supersaturation of normal air over a temperature range of –40<~T<~0 °C. The measurements use an inexpensive commercial hygrometer which is based on a thin-film capacitive sensor. The time required for the sensor to reach equilibrium was found to increase exponentially with decreasing sensor temperature, exceeding 2 min for T = –30 °C; however, the water vapor sensitivity of the device remained high down to this temperature. After calibrating our measurement procedure, we found residual scatter in the data corresponding to an uncertainty in the absolute water vapor pressure of about ±15%. This scatter was due mainly to long-term drift, which appeared to be intrinsic to the capacitive thin-film sensor. The origin of this drift is not clear, but it effectively limits the applicability of this instrument for absolute measurements. We also found, however, that the high sensitivity of the thin-film sensor makes it rather well suited for differential measurements. By comparing supersaturated and saturated air at the same temperature we obtained a relative measurement uncertainty of about ±1.5%, an order of magnitude better than the absolute measurements
Robust variable selection in partially varying coefficient single-index model
By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048
Field-induced structure transformation in electrorheological solids
We have computed the local electric field in a body-centered tetragonal (BCT)
lattice of point dipoles via the Ewald-Kornfeld formulation, in an attempt to
examine the effects of a structure transformation on the local field strength.
For the ground state of an electrorheological solid of hard spheres, we
identified a novel structure transformation from the BCT to the face-centered
cubic (FCC) lattices by changing the uniaxial lattice constant c under the hard
sphere constraint. In contrast to the previous results, the local field
exhibits a non-monotonic transition from BCT to FCC. As c increases from the
BCT ground state, the local field initially decreases rapidly towards the
isotropic value at the body-centered cubic lattice, decreases further, reaching
a minimum value and increases, passing through the isotropic value again at an
intermediate lattice, reaches a maximum value and finally decreases to the FCC
value. An experimental realization of the structure transformation is
suggested. Moreover, the change in the local field can lead to a generalized
Clausius-Mossotti equation for the BCT lattices.Comment: Submitted to Phys. Rev.
Multi-Spacecraft Measurement of Turbulence within a Magnetic Reconnection Jet
The relationship between magnetic reconnection and plasma turbulence is
investigated using multipoint in-situ measurements from the Cluster spacecraft
within a high-speed reconnection jet in the terrestrial magnetotail. We show
explicitly that work done by electromagnetic fields on the particles,
, has a non-Gaussian distribution and is
concentrated in regions of high electric current density. Hence, magnetic
energy is converted to kinetic energy in an intermittent manner. Furthermore,
we find the higher-order statistics of magnetic field fluctuations generated by
reconnection are characterized by multifractal scaling on magnetofluid scales
and non-Gaussian global scale invariance on kinetic scales. These observations
suggest within the reconnection jet has an analogue
in fluid-like turbulence theory in that it proceeds via coherent structures
generated by an intermittent cascade. This supports the hypothesis that
turbulent dissipation is highly nonuniform, and thus these results could have
far reaching implications for space and astrophysical plasmas.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
Angular Position of Nodes in the Superconducting Gap of Quasi-2D Heavy-Fermion Superconductor CeCoIn_5
The thermal conductivity of the heavy-fermion superconductor CeCoIn_5 has
been studied in a magnetic field rotating within the 2D planes. A clear
fourfold symmetry of the thermal conductivity which is characteristic of a
superconducting gap with nodes along the (+-pi,+-pi)-directions is resolved.
The thermal conductivity measurement also reveals a first order transition at
H_c2, indicating a Pauli limited superconducting state. These results indicate
that the symmetry most likely belongs to d_{x^2-y^2}, implying that the
anisotropic antiferromagnetic fluctuation is relevant to the superconductivity.Comment: 5 Pages, 4 figure
Neural processes of proactive and reactive controls modulated by motor-skill experiences
This study investigated the experience of open and closed motor skills on modulating proactive and reactive control processes in task switching. Fifty-four participants who were open-skilled
Non-Hermitian coherent coupling of nanomagnets by exchange spin waves
Non-Hermitian physics has recently attracted much attention in optics and
photonics. Less explored is non-Hermitian magnonics that provides opportunities
to take advantage of the inevitable dissipation of magnons or spin waves in
magnetic systems. Here we demonstrate non-Hermitian coherent coupling of two
distant nanomagnets by fast spin waves with sub-50 nm wavelengths. Magnons in
two nanomagnets are unidirectionally phase-locked with phase shifts controlled
by magnon spin torque and spin-wave propagation. Our results are attractive for
analog neuromorphic computing that requires unidirectional information
transmission
Photon-number-solving Decoy State Quantum Key Distribution
In this paper, a photon-number-resolving decoy state quantum key distribution
scheme is presented based on recent experimental advancements. A new upper
bound on the fraction of counts caused by multiphoton pulses is given. This
upper bound is independent of intensity of the decoy source, so that both the
signal pulses and the decoy pulses can be used to generate the raw key after
verified the security of the communication. This upper bound is also the lower
bound on the fraction of counts caused by multiphoton pulses as long as faint
coherent sources and high lossy channels are used. We show that Eve's coherent
multiphoton pulse (CMP) attack is more efficient than symmetric individual (SI)
attack when quantum bit error rate is small, so that CMP attack should be
considered to ensure the security of the final key. finally, optimal intensity
of laser source is presented which provides 23.9 km increase in the
transmission distance. 03.67.DdComment: This is a detailed and extended version of quant-ph/0504221. In this
paper, a detailed discussion of photon-number-resolving QKD scheme is
presented. Moreover, the detailed discussion of coherent multiphoton pulse
attack (CMP) is presented. 2 figures and some discussions are added. A
detailed cauculation of the "new" upper bound 'is presente
- …