1,315 research outputs found

    B-cell Prolymphocytic Leukemia in a Young Male

    Get PDF
    B-cell prolymphocytic leukemia [B-PLL] is a neoplasm of B prolymphocytes affecting the peripheral blood, bone marrow and spleen. The principal disease characteristics are massive splenomegaly with absent or minimal peripheral lymphadenopathy and a rapidly rising lymphocyte count. Here, we report a case of B-PLL in a 42 year old male who had come for routine health check up

    Observation of Pure Spin Transport in a Diamond Spin Wire

    Full text link
    Spin transport electronics - spintronics - focuses on utilizing electron spin as a state variable for quantum and classical information processing and storage. Some insulating materials, such as diamond, offer defect centers whose associated spins are well-isolated from their environment giving them long coherence times; however, spin interactions are important for transport, entanglement, and read-out. Here, we report direct measurement of pure spin transport - free of any charge motion - within a nanoscale quasi 1D 'spin wire', and find a spin diffusion length ~ 700 nm. We exploit the statistical fluctuations of a small number of spins (N\sqrt{N} < 100 net spins) which are in thermal equilibrium and have no imposed polarization gradient. The spin transport proceeds by means of magnetic dipole interactions that induce flip-flop transitions, a mechanism that can enable highly efficient, even reversible, pure spin currents. To further study the dynamics within the spin wire, we implement a magnetic resonance protocol that improves spatial resolution and provides nanoscale spectroscopic information which confirms the observed spin transport. This spectroscopic tool opens a potential route for spatially encoding spin information in long-lived nuclear spin states. Our measurements probe intrinsic spin dynamics at the nanometre scale, providing detailed insight needed for practical devices which seek to control spin.Comment: 7 pages, 2 figures, under consideration at Nature Nanotechnolog

    Host-to-host variation of ecological interactions in polymicrobial infections

    Full text link
    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used in analyzing host-microorganism relationships, as well as most of the ecological theories proposed to explain co-evolution of host and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of inter-host differences. Here we analyze mechanisms underlying host-to-host variations, using the well-characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a Maximum Entropy (MaxEnt) based inference scheme. We find that the nature of the interactions among bacterial species critically regulates host-to-host variations of these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.Comment: 39 Pages 6 figure

    Aspects of the stochastic Burgers equation and their connection with turbulence

    Full text link
    We present results for the 1 dimensional stochastically forced Burgers equation when the spatial range of the forcing varies. As the range of forcing moves from small scales to large scales, the system goes from a chaotic, structureless state to a structured state dominated by shocks. This transition takes place through an intermediate region where the system exhibits rich multifractal behavior. This is mainly the region of interest to us. We only mention in passing the hydrodynamic limit of forcing confined to large scales, where much work has taken place since that of Polyakov. In order to make the general framework clear, we give an introduction to aspects of isotropic, homogeneous turbulence, a description of Kolmogorov scaling, and, with the help of a simple model, an introduction to the language of multifractality which is used to discuss intermittency corrections to scaling. We continue with a general discussion of the Burgers equation and forcing, and some aspects of three dimensional turbulence where - because of the mathematical analogy between equations derived from the Navier-Stokes and Burgers equations - one can gain insight from the study of the simpler stochastic Burgers equation. These aspects concern the connection of dissipation rate intermittency exponents with those characterizing the structure functions of the velocity field, and the dynamical behavior, characterized by different time constants, of velocity structure functions. We also show how the exponents characterizing the multifractal behavior of velocity structure functions in the above mentioned transition region can effectively be calculated in the case of the stochastic Burgers equation.Comment: 25 pages, 4 figure

    Continuum description of profile scaling in nanostructure decay

    Full text link
    The relaxation of axisymmetric crystal surfaces with a single facet below the roughening transition is studied via a continuum approach that accounts for step energy g_1 and step-step interaction energy g_3>0. For diffusion-limited kinetics, free-boundary and boundary-layer theories are used for self-similar shapes close to the growing facet. For long times and g_3/g_1 < 1, (a) a universal equation is derived for the shape profile, (b) the layer thickness varies as (g_3/g_1)^{1/3}, (c) distinct solutions are found for different g_3/_1, and (d) for conical shapes, the profile peak scales as (g_3/g_1)^{-1/6}. These results compare favorably with kinetic simulations.Comment: 4 pages including 3 figure

    Log-Poisson Statistics and Extended Self-Similarity in Driven Dissipative Systems

    Full text link
    The Bak-Chen-Tang forest fire model was proposed as a toy model of turbulent systems, where energy (in the form of trees) is injected uniformly and globally, but is dissipated (burns) locally. We review our previous results on the model and present our new results on the statistics of the higher-order moments for the spatial distribution of fires. We show numerically that the spatial distribution of dissipation can be described by Log-Poisson statistics which leads to extended self-similarity (ESS). Similar behavior is also found in models based on directed percolation; this suggests that the concept of Log-Poisson statistics of (appropriately normalized) variables can be used to describe scaling not only in turbulence but also in a wide range of driven dissipative systems.Comment: 10 pages, 5 figure

    Spiral Magnets as Gapless Mott Insulators

    Full text link
    In the large UU limit, the ground state of the half-filled, nearest-neighbor Hubbard model on the triangular lattice is the three-sublattice antiferromagnet. In sharp contrast with the square-lattice case, where transverse spin-waves and charge excitations remain decoupled to all orders in t/Ut/U, it is shown that beyond leading order in t/Ut/U the three Goldstone modes on the triangular lattice are a linear combination of spin and charge. This leads to non-vanishing conductivity at any finite frequency, even though the magnet remains insulating at zero frequency. More generally, non-collinear spin order should lead to such gapless insulating behavior.Comment: 10 pages, REVTEX 3.0, 3 uuencoded postscript figures, CRPS-94-0
    corecore