632 research outputs found

    Microwave Transport in Metallic Single-Walled Carbon Nanotubes

    Full text link
    The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.Comment: Added reference

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires

    Get PDF
    InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of non-epitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of high yield of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2,700 cm2/Vs and ION/IOFF >103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, printable transistors, capable of delivering 5-10 mA ON currents (~400 nanowires).Comment: 21 pages, 5 figures included, all in .docx format. Nano Research (In Press

    High-Field, Quasi-Ballistic Transport in Short Carbon Nanotubes

    Get PDF
    Single walled carbon nanotubes with Pd ohmic contacts and lengths ranging from several microns down to 10 nm are investigated by electron transport experiments and theory. The mean free path (mfp) for acoustic phonon scattering is estimated to be lap~300 nm, and that for optical phonon scattering is lop~15 nm. Transport through very short (~10 nm) nanotubes is free of significant acoustic and optical phonon scattering and thus ballistic and quasi-ballistic at the low and high bias voltage limits respectively. High currents of up to 70 uA can flow through a short nanotube. Possible mechanisms for the eventual electrical breakdown of short nanotubes at high fields are discussed. The results presented here have important implications to high performance nanotube transistors and interconnects.Comment: 4 figures. PRL, in pres

    Topological transitions in carbon nanotube networks via nanoscale confinement

    Full text link
    Efforts aimed at large-scale integration of nanoelectronic devices that exploit the superior electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs) remain limited by the difficulties associated with manipulation and packaging of individual SWNTs. Alternative approaches based on ultra-thin carbon nanotube networks (CNNs) have enjoyed success of late with the realization of several scalable device applications. However, precise control over the network electronic transport is challenging due to i) an often uncontrollable interplay between network coverage and its topology and ii) the inherent electrical heterogeneity of the constituent SWNTs. In this letter, we use template-assisted fluidic assembly of SWCNT networks to explore the effect of geometric confinement on the network topology. Heterogeneous SWCNT networks dip-coated onto sub-micron wide ultra-thin polymer channels exhibit a topology that becomes increasingly aligned with decreasing channel width and thickness. Experimental scale coarse-grained computations of interacting SWCNTs show that the effect is a reflection of an aligned topology that is no longer dependent on the network density, which in turn emerges as a robust knob that can induce semiconductor-to-metallic transitions in the network response. Our study demonstrates the effectiveness of directed assembly on channels with varying degrees of confinement as a simple tool to tailor the conductance of the otherwise heterogeneous network, opening up the possibility of robust large-scale CNN-based devices.Comment: 4 pages, 3 figure

    Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes

    Get PDF
    We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte
    • …
    corecore