177 research outputs found

    Shipping blood to a central laboratory in multicenter clinical trials: effect of ambient temperature on specimen temperature, and effects of temperature on mononuclear cell yield, viability and immunologic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials of immunologic therapies provide opportunities to study the cellular and molecular effects of those therapies and may permit identification of biomarkers of response. When the trials are performed at multiple centers, transport and storage of clinical specimens become important variables that may affect lymphocyte viability and function in blood and tissue specimens. The effect of temperature during storage and shipment of peripheral blood on subsequent processing, recovery, and function of lymphocytes is understudied and represents the focus of this study.</p> <p>Methods</p> <p>Peripheral blood samples (n = 285) from patients enrolled in 2 clinical trials of a melanoma vaccine were shipped from clinical centers 250 or 1100 miles to a central laboratory at the sponsoring institution. The yield of peripheral blood mononuclear cells (PBMC) collected before and after cryostorage was correlated with temperatures encountered during shipment. Also, to simulate shipping of whole blood, heparinized blood from healthy donors was collected and stored at 15°C, 22°C, 30°C, or 40°C, for varied intervals before isolation of PBMC. Specimen integrity was assessed by measures of yield, recovery, viability, and function of isolated lymphocytes. Several packaging systems were also evaluated during simulated shipping for the ability to maintain the internal temperature in adverse temperatures over time.</p> <p>Results</p> <p>Blood specimen containers experienced temperatures during shipment ranging from -1 to 35°C. Exposure to temperatures above room temperature (22°C) resulted in greater yields of PBMC. Reduced cell recovery following cryo-preservation as well as decreased viability and immune function were observed in specimens exposed to 15°C or 40°C for greater than 8 hours when compared to storage at 22°C. There was a trend toward improved preservation of blood specimen integrity stored at 30°C prior to processing for all time points tested. Internal temperatures of blood shipping containers were maintained longer in an acceptable range when warm packs were included.</p> <p>Conclusions</p> <p>Blood packages shipped overnight by commercial carrier may encounter extreme seasonal temperatures. Therefore, considerations in the design of shipping containers should include protecting against extreme ambient temperature deviations and maintaining specimen temperature above 22°C or preferably near 30°C.</p

    Surgery of primary melanomas

    Get PDF
    Surgery remains the mainstay of melanoma therapy, regardless of the tumor site. Only the early diagnosis combined with proper surgical therapy currently gives patients affected by this malignancy the chance for a full cure. The main goal of surgical therapy is to provide the local control of the disease and to secure long-term survival of the patient without reasonable functional and esthetic impairment. The recommended method of biopsy-excisional biopsy, as an initial diagnostic and, to some extent, therapeutic procedure-is performed under local anesthesia as an elliptical incision with visual clear margins of 1-3 mm and with some mm of subcutaneous tissue. The extent of radical excision of the primary tumor (or scar after excisional biopsy) is based on the histopathologic characteristics of the primary tumor and usually consists of 1-2 cm margins with primary closure. The philosophy behind conducted randomized clinical trials has been to find the most conservative surgical approach that is able to guarantee the same results as more demolitive treatment. This has been the background of the trials designed to define the correct margins of excision around a primary cutaneous melanoma. Much less definition can be dedicated to the surgical management of patients with non-cutaneous melanomas

    An HLA-A2-restricted tyrosinase antigen on melanoma cells results from posttranslational modification and suggests a novel pathway for processing of membrane proteins.

    Full text link
    T lymphocytes recognize antigens consisting of peptides presented by class I and II major histocompatibility complex (MHC) molecules. The peptides identified so far have been predictable from the amino acid sequences of proteins. We have identified the natural peptide target of a CTL clone that recognizes the tyrosinase gene product on melanoma cells. The peptide results from posttranslational conversion of asparagine to aspartic acid. This change is of central importance for peptide recognition by melanoma-specific T cells, but has no impact on peptide binding to the MHC molecule. This posttranslational modification has not been previously described for any MHC-associated peptide and represents the first demonstration of posttranslational modification of a naturally processed class I-associated peptide. This observation is relevant to the identification and prediction of potential peptide antigens. The most likely mechanism for production of this peptide leads to the suggestion that antigenic peptides can be derived from proteins that are translated into the endoplasmic reticulum

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy

    Get PDF
    BACKGROUND: In recent years encouraging progress has been made in developing vaccine treatments for cancer, particularly with melanoma. However, the overall rate of clinically significant results has remained low. The present research used microarray datasets from previous investigations to examine gene expression patterns in cancer cell lines with the goal of better understanding the tumor microenvironment. METHODS: Principal Components Analyses with Promax rotational transformations were carried out with 90 cancer cell lines from 3 microarray datasets, which had been made available on the internet as supplementary information from prior publications. RESULTS: In each of the analyses a well defined melanoma component was identified that contained a gene coding for the enzyme, glutaminyl cyclase, which was as highly expressed as genes from a variety of well established biomarkers for melanoma, such as MAGE-3 and MART-1, which have frequently been used in clinical trials of melanoma vaccines. CONCLUSION: Since glutaminyl cyclase converts glutamine and glutamic acid into a pyroglutamic form, it may interfere with the tumor destructive process of vaccines using peptides having glutamine or glutamic acid at their N-terminals. Finding ways of inhibiting the activity of glutaminyl cyclase in the tumor microenvironment may help to increase the effectiveness of some melanoma vaccines

    The pituitary tumor transforming gene 1 (PTTG-1): An immunological target for multiple myeloma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple Myeloma is a cancer of B plasma cells, which produce non-specific antibodies and proliferate uncontrolled. Due to the potential relapse and non-specificity of current treatments, immunotherapy promises to be more specific and may induce long-term immunity in patients. The pituitary tumor transforming gene 1 (PTTG-1) has been shown to be a novel oncogene, expressed in the testis, thymus, colon, lung and placenta (undetectable in most other tissues). Furthermore, it is over expressed in many tumors such as the pituitary adenoma, breast, gastrointestinal cancers, leukemia, lymphoma, and lung cancer and it seems to be associated with tumorigenesis, angiogenesis and cancer progression. The purpose was to investigate the presence/rate of expression of PTTG-1 in multiple myeloma patients.</p> <p>Methods</p> <p>We analyzed the PTTG-1 expression at the transcriptional and the protein level, by PCR, immunocytochemical methods, Dot-blot and ELISA performed on patient's sera in 19 multiple myeloma patients, 6 different multiple myeloma cell lines and in normal human tissue.</p> <p>Results</p> <p>We did not find PTTG-1 presence in the normal human tissue panel, but PTTG-1 mRNA was detectable in 12 of the 19 patients, giving evidence of a 63% rate of expression (data confirmed by ELISA). Four of the 6 investigated cell lines (66.6%) were positive for PTTG-1. Investigations of protein expression gave evidence of 26.3% cytoplasmic expression and 16% surface expression in the plasma cells of multiple myeloma patients. Protein presence was also confirmed by Dot-blot in both cell lines and patients.</p> <p>Conclusion</p> <p>We established PTTG-1's presence at both the transcriptional and protein levels. These data suggest that PTTG-1 is aberrantly expressed in multiple myeloma plasma cells, is highly immunogenic and is a suitable target for immunotherapy of multiple myeloma.</p

    gp100/pmel17 and tyrosinase encode multiple epitopes recognized by Th1-type CD4+T cells

    Get PDF
    CD4+ T cells modulate the magnitude and durability of CTL responses in vivo, and may serve as effector cells in the tumour microenvironment. In order to identify the tumour epitopes recognized by tumour-reactive human CD4+ T cells, we combined the use of an HLA-DR4/peptide binding algorithm with an IFN-γ ELISPOT assay. Two known and three novel CD4+ T cell epitopes derived from the gp 100/pmel17 and tyrosinase melanocyte-associated antigens were confirmed or identified. Of major interest, we determined that freshly-isolated PBMC frequencies of Th1-type CD4+ T recognizing these peptides are frequently elevated in HLA-DR4+ melanoma patients (but not normal donors) that are currently disease-free as a result of therapeutic intervention. Epitope-specific CD4+ T cells from normal DR4+ donors could be induced, however, after in vitro stimulation with autologous dendritic cell pulsed with antigens (peptides or antigen-positive melanoma lysates) or infected with recombinant vaccinia virus encoding the relevant antigen. Peptide-reactive CD4+ T cells also recognized HLA-DR4+ melanoma cell lines that constitutively express the relevant antigen. Based on these data, these epitopes may serve as potent vaccine components to promote clinically-relevant Th1-type CD4+ T cell effector function in situ. http://www.bjcancer.com © 2001 Cancer Research Campaig
    corecore