16,868 research outputs found

    Incentivizing High Quality Crowdwork

    Full text link
    We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We design and run randomized behavioral experiments on the popular crowdsourcing platform Amazon Mechanical Turk with the goal of understanding when, where, and why PBPs help, identifying properties of the payment, payment structure, and the task itself that make them most effective. We provide examples of tasks for which PBPs do improve quality. For such tasks, the effectiveness of PBPs is not too sensitive to the threshold for quality required to receive the bonus, while the magnitude of the bonus must be large enough to make the reward salient. We also present examples of tasks for which PBPs do not improve quality. Our results suggest that for PBPs to improve quality, the task must be effort-responsive: the task must allow workers to produce higher quality work by exerting more effort. We also give a simple method to determine if a task is effort-responsive a priori. Furthermore, our experiments suggest that all payments on Mechanical Turk are, to some degree, implicitly performance-based in that workers believe their work may be rejected if their performance is sufficiently poor. Finally, we propose a new model of worker behavior that extends the standard principal-agent model from economics to include a worker's subjective beliefs about his likelihood of being paid, and show that the predictions of this model are in line with our experimental findings. This model may be useful as a foundation for theoretical studies of incentives in crowdsourcing markets.Comment: This is a preprint of an Article accepted for publication in WWW \c{opyright} 2015 International World Wide Web Conference Committe

    Heterogeneous Metric Learning of Categorical Data with Hierarchical Couplings

    Full text link
    © 1989-2012 IEEE. Learning appropriate metric is critical for effectively capturing complex data characteristics. The metric learning of categorical data with hierarchical coupling relationships and local heterogeneous distributions is very challenging yet rarely explored. This paper proposes a Heterogeneous mEtric Learning with hIerarchical Couplings (HELIC for short) for this type of categorical data. HELIC captures both low-level value-to-attribute and high-level attribute-to-class hierarchical couplings, and reveals the intrinsic heterogeneities embedded in each level of couplings. Theoretical analyses of the effectiveness and generalization error bound verify that HELIC effectively represents the above complexities. Extensive experiments on 30 data sets with diverse characteristics demonstrate that HELIC-enabled classification significantly enhances the accuracy (up to 40.93 percent), compared with five state-of-the-art baselines

    Creep and fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

    Get PDF
    The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution

    Creep and fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

    Get PDF
    The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution

    A Transformer and Visual Foundation Model-Based Method for Cross-View Remote Sensing Image Retrieval

    Get PDF
    Retrieving UAV images that lack POS information with georeferenced satellite orthoimagery is challenging due to the differences in angles of views. Most existing methods rely on deep neural networks with a large number of parameters, leading to substantial time and financial investments in network training. Consequently, these methods may not be well-suited for downstream tasks that have high timeliness requirements. In this work, we propose a cross-view remote sensing image retrieval method based on transformer and visual foundation model. We investigated the potential of visual foundation model for extracting common features from cross-view images. Training is only conducted on a small, self-designed retrieval head, alleviating the burden of network training. Specifically, we designed a CVV module to optimize the features extracted from the visual foundation model, making these features more adept for cross-view image retrieval tasks. And we designed an MLP head to achieve similarity discrimination. The method is verified on a publicly available dataset containing multiple scenes. Our method shows excellent results in terms of both efficiency and accuracy on 15 sub-datasets (10 or 50 scene categories) derived from the public dataset, which holds practical value in engineering applications with streamlined scene categories and constrained computational resources. Furthermore, we initiated a comprehensive discussion and conducted ablation experiments on the network design to validate its efficacy. Additionally, we analyzed the presence of overfitting within the network and deliberated on the limitations of our study, proposing potential avenues for future enhancements

    Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe

    Full text link
    The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.Comment: 32 pages, 15 figures (supplementary materials included), accepted by PR

    An analysis of the X-ray emission from the supernova remnant 3C397

    Get PDF
    The ASCA SIS and the ROSAT PSPC spectral data of the SNR 3C397 are analysed with a two-component non-equilibrium ionization model. Besides, the ASCA SIS0 and SIS1 spectra are also fitted simultaneously in an equilibrium case. The resulting values of the hydrogen column density yield a distance of \sim8\kpc to 3C397. It is found that the hard X-ray emission, containing S and Fe Kα\alpha lines, arises primarily from the hot component, while most of the soft emission, composed mainly of Mg, Si, Fe L lines, and continuum, is produced by the cool component. The emission measures suggest that the remnant evolves in a cloudy medium and imply that the supernova progenitor might not be a massive early-type star. The cool component is approaching ionization equilibrium. The ages estimated from the ionization parameters and dynamics are all much greater than the previous determination. We restore the X-ray maps using the ASCA SIS data and compare them with the ROSAT HRI and the NRAO VLA Sky Survey (NVSS) 20 cm maps. The morphology with two bright concentrations suggests a bipolar remnant encountering a denser medium in the west.Comment: 20 pages, aasms4.sty, 3 figures To appear in ApJ (1999

    Controllable preparation of an eggshell membrane supported hydrogel electrolyte with thickness-dependent electrochemical performance

    Get PDF
    The preparation of thin gel electrolyte membranes with controllable thickness is important to explore the thickness-dependent electrochemical behaviors; this can further guide the fabrication of energy devices. Here we employ an in situ polymerization method to prepare a BSA–PDMAA–SiO2 cross-linked nanocomposite hydrogel on surfaces of eggshell membranes, which can be used as integrated separator and electrolyte in a supercapacitor after absorbing the electrolyte. The novel controlled thickness of the coated hydrogel therefore offers superior space utilization essential for all-solid-state devices. The composite gel can reach a high ionic conductivity of 8.8 mS cm−1 and a resulting Csp value of 161 F g−1 at the current density of 1 A g−1 when assembled in the supercapacitor, while the eggshell membrane based device has limited values of 2.7 mS cm−1 and 88 F g−1. A new insight into hybrid material preparation from low-cost natural life waste is presented in this work to obtain high performance gel electrolytes in energy devices
    • 

    corecore