485 research outputs found

    Ashtekar's New Variables and Positive Energy

    Full text link
    We discuss earlier unsuccessful attempts to formulate a positive gravitational energy proof in terms of the New Variables of Ashtekar. We also point out the difficulties of a Witten spinor type proof. We then use the special orthonormal frame gauge conditions to obtain a locally positive expression for the New Variables Hamiltonian and thereby a ``localization'' of gravitational energy as well as a positive energy proof.Comment: 12 pages Plain Te

    Quasi-local Energy for Spherically Symmetric Spacetimes

    Full text link
    We present two complementary approaches for determining the reference for the covariant Hamiltonian boundary term quasi-local energy and test them on spherically symmetric spacetimes. On the one hand, we isometrically match the 2-surface and extremize the energy. This can be done in two ways, which we call programs I (without constraint) and II (with additional constraints). On the other hand, we match the orthonormal 4-frames of the dynamic and the reference spacetimes. Then, if we further specify the observer by requiring the reference displacement to be the timelike Killing vector of the reference, the result is the same as program I, and the energy can be positive, zero, or even negative. If, instead, we require that the Lie derivatives of the two-area along the displacement vector in both the dynamic and reference spacetimes to be the same, the result is the same as program II, and it satisfies the usual criteria: the energies are non-negative and vanish only for Minkowski (or anti-de Sitter) spacetime.Comment: 16 pages, no figure

    Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    Full text link
    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a Commen

    Time to revise our dialogue : how flat is the paediatric flatfoot?

    Get PDF
    A recent systematic review of measures of foot development used the medial longitudinal arch profile as its primary indicator of development. A comparative analysis of existing studies was undertaken. This work confirmed changes with arch profile were age-dependent, although the age at which foot development ceased remains unknown. This work also highlighted the abundance of clinical measures used in existing research and outlined the challenges with drawing consensus from available data. There is a clear need to move this debate forward and, to do so, it is essential that scientific and clinical communities unite. It is time to abandon ill-defined measures of foot position, look beyond the medial longitudinal arch as a sole parameter of foot development and re-focus our perspective(s) on the paediatric foot in order to make advances with clinical practice and research

    The Hamiltonian boundary term and quasi-local energy flux

    Full text link
    The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasi-local values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasi-local energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasi-local energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasi-local expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant.Comment: 12 pages, no figures, revtex

    Quasi-local energy-momentum and energy flux at null infinity

    Full text link
    The null infinity limit of the gravitational energy-momentum and energy flux determined by the covariant Hamiltonian quasi-local expressions is evaluated using the NP spin coefficients. The reference contribution is considered by three different embedding approaches. All of them give the expected Bondi energy and energy flux.Comment: 14 pages, accepted by Phys.Rev.

    Black Hole Solutions of Kaluza-Klein Supergravity Theories and String Theory

    Get PDF
    We find U(1)_{E} \times U(1)_{M} non-extremal black hole solutions of 6-dimensional Kaluza-Klein supergravity theories. Extremal solutions were found by Cveti\v{c} and Youm\cite{C-Y}. Multi black hole solutions are also presented. After electro-magnetic duality transformation is performed, these multi black hole solutions are mapped into the the exact solutions found by Horowitz and Tseytlin\cite{H-T} in 5-dimensional string theory compactified into 4-dimensions. The massless fields of this theory can be embedded into the heterotic string theory compactified on a 6-torus. Rotating black hole solutions can be read off those of the heterotic string theory found by Sen\cite{Sen3}.Comment: 23 pages text(latex), a figure upon reques
    corecore