2,262 research outputs found

    Ultraviolet television data from the Orbiting Astronomical Observatory. 1: Instrumentation and analysis techniques for the celescope experiment

    Get PDF
    The celescope instrumentation and data analysis system is described, the major problems encountered during orbital operation are summerized, and a few major problems that were anticipated but did not materialize are listed

    A Fresh Catch of Massive Binaries in the Cygnus OB2 Association

    Full text link
    Massive binary stars may constitute a substantial fraction of progenitors to supernovae and gamma-ray bursts, and the distribution of their orbital characteristics holds clues to the formation process of massive stars. As a contribution to securing statistics on OB-type binaries, we report the discovery and orbital parameters for five new systems as part of the Cygnus OB2 Radial Velocity Survey. Four of the new systems (MT070, MT174, MT267, and MT734 (a.k.a. VI Cygni #11) are single-lined spectroscopic binaries while one (MT103) is a double-lined system (B1V+B2V). MT070 is noteworthy as the longest period system yet measured in Cyg OB2, with P=6.2 yr. The other four systems have periods ranging between 4 and 73 days. MT174 is noteworthy for having a probable mass ratio q<0.1, making it a candidate progenitor to a low-mass X-ray binary. These measurements bring the total number of massive binaries in Cyg OB2 to 25, the most currently known in any single cluster or association.Comment: Accepted for publication in the Astrophysical Journa

    Assessing variability of wind speed: comparison and validation of 27 methodologies

    Get PDF
    Because wind resources vary from year to year, the intermonthly and interannual variability (IAV) of wind speed is a key component of the overall uncertainty in the wind resource assessment process, thereby creating challenges for wind farm operators and owners. We present a critical assessment of several common approaches for calculating variability by applying each of the methods to the same 37-year monthly wind-speed and energy-production time series to highlight the differences between these methods. We then assess the accuracy of the variability calculations by correlating the wind-speed variability estimates to the variabilities of actual wind farm energy production. We recommend the robust coefficient of variation (RCoV) for systematically estimating variability, and we underscore its advantages as well as the importance of using a statistically robust and resistant method. Using normalized spread metrics, including RCoV, high variability of monthly mean wind speeds at a location effectively denotes strong fluctuations of monthly total energy generation, and vice versa. Meanwhile, the wind-speed IAVs computed with annual-mean data fail to adequately represent energy-production IAVs of wind farms. Finally, we find that estimates of energy-generation variability require 10±3 years of monthly mean wind-speed records to achieve a 90&thinsp;% statistical confidence. This paper also provides guidance on the spatial distribution of wind-speed RCoV.</p

    An interactive atlas for marine biodiversity conservation in the Coral Triangle

    Get PDF
    An online atlas of the Coral Triangle region of the Indo-Pacific biogeographic realm was developed. This online atlas consists of the three interlinked parts: (1) Biodiversity Features; (2) Areas of Importance for Biodiversity Conservation; (3) recommended priorities for Marine Protected Area (MPA) Network Expansion (http://www.marine.auckland.ac.nz/CTMAPS). The first map, Biodiversity Features, provides comprehensive data on the region's marine protected areas and biodiversity features, threats, and environmental characteristics. The second provides spatial information on areas of high biodiversity conservation values, while the third map shows priority areas for expanding the current Coral Triangle MPA network. This atlas provides the most comprehensive biodiversity datasets that have been assembled for the region. The datasets were retrieved and generated systematically from various open-access sources. To engage a wider audience and to raise participation in biodiversity conservation, the maps were designed as an interactive and online atlas. This atlas presents representative information to promote a better understanding of the key marine and coastal biodiversity characteristics of the region and enables the application of marine biodiversity informatics to support marine ecosystem-based management in the Coral Triangle region.</p

    National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory

    Get PDF
    A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented

    Wind turbine power production and annual energy production depend on atmospheric stability and turbulence

    Get PDF
    Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number (RB). We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different RB regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk

    Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation

    Full text link
    We describe a method to measure the magnetic field orientation of coronal mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles, Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are produced by a radio source occulted by a moving flux rope depending on its orientation. These curves are consistent with the Helios observations, providing evidence for the flux-rope geometry of CMEs. Many background radio sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope that the magnetic field orientation and helicity of the flux rope can be determined 2-3 days before it reaches Earth, which is of crucial importance for space weather forecasting. An FR calculation based on global magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows that FR mapping can also resolve a CME geometry curved back to the Sun. We discuss implementation of the method using data from the Mileura Widefield Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
    corecore