469 research outputs found

    Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters

    Full text link
    We study the coherent inelastic diffraction of very weakly bound two body clusters from a material transmission grating. We show that internal transitions of the clusters can lead to new separate peaks in the diffraction pattern whose angular positions determine the excitation energies. Using a quantum mechanical approach to few body scattering theory we determine the relative peak intensities for the diffraction of the van der Waals dimers (D_2)_2 and H_2-D_2. Based on the results for these realistic examples we discuss the possible applications and experimental challenges of this coherent inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press

    A Pre-Protostellar Core in L1551

    Full text link
    Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively quiescent region to the northwest of the well-known IRS 5 source. The kinetic temperature is measured to be 9K, the total mass is ~2Msun, and the average particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection oriented at a position angle of 133deg. The turbulent motions are on the order of the sound speed in the medium and contain 4% of the gravitational energy, E_{grav}, of the core. The angular momentum vector is projected along the major axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}| and the virial mass is approximately equal to the total mass. L1551-MC is gravitationally bound and in the absence of strong, ~160 microgauss, magnetic fields will likely contract on a ~0.3 Myr time scale. The line profiles of many molecular species suggest that the cold quiescent interior is surrounded by a dynamic, perhaps infalling envelope which is embedded within the ambient molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte

    Gravitational wave forms for a three-body system in Lagrange's orbit: parameter determinations and a binary source test

    Full text link
    Continuing work initiated in an earlier publication [Torigoe et al. Phys. Rev. Lett. {\bf 102}, 251101 (2009)], gravitational wave forms for a three-body system in Lagrange's orbit are considered especially in an analytic method. First, we derive an expression of the three-body wave forms at the mass quadrupole, octupole and current quadrupole orders. By using the expressions, we solve a gravitational-wave {\it inverse} problem of determining the source parameters to this particular configuration (three masses, a distance of the source to an observer, and the orbital inclination angle to the line of sight) through observations of the gravitational wave forms alone. For this purpose, the chirp mass to a three-body system in the particular configuration is expressed in terms of only the mass ratios by deleting initial angle positions. We discuss also whether and how a binary source can be distinguished from a three-body system in Lagrange's orbit or others.Comment: 21 pages, 3 figures, 1 table; text improved, typos corrected; accepted for publication in PR

    The nature of the dense core population in the Pipe Nebula: A survey of NH3, CCS, and HC5N molecular line emission

    Full text link
    Recent extinction studies of the Pipe Nebula (d=130 pc) reveal many cores spanning a range in mass from 0.2 to 20.4 Msun. These dense cores were identified via their high extinction and comprise a starless population in a very early stage of development. Here we present a survey of NH3 (1,1), NH3 (2,2), CCS (2_1,1_0), and HC5N (9,8) emission toward 46 of these cores. An atlas of the 2MASS extinction maps is also presented. In total, we detect 63% of the cores in NH3 (1,1) 22% in NH3 (2,2), 28% in CCS, and 9% in HC5N emission. We find the cores are associated with dense gas (~10^4 cm-3) with 9.5 < T_k < 17 K. Compared to C18O, we find the NH3 linewidths are systematically narrower, implying that the NH3 is tracing the dense component of the gas and that these cores are relatively quiescent. We find no correlation between core linewidth and size. The derived properties of the Pipe cores are similar to cores within other low-mass star-forming regions: the only differences are that the Pipe cores have weaker NH3 emision and most show no current star formation as evidenced by the lack of embedded infrared sources. Such weak NH3 emission could arise due to low column densities and abundances or reduced excitation due to relatively low core volume densities. Either alternative implies that the cores are relatively young. Thus, the Pipe cores represent an excellent sample of dense cores in which to study the initial conditions for star formation and the earliest stages of core formation and evolution.Comment: 35 pages, 10 figures (excluding the appendix). For the complete appendix contact [email protected]. Accepted for publication in ApJ

    Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K

    Get PDF
    Rate coefficients for rotational transitions in H_2 induced by H_2 impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H_2)_2 potential energy surface were performed. The potential energy surface used here is presumed to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels J <= 8 were computed for collision energies ranging between 0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 < T <10,000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good though discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para- and ortho-H_2 collisions are obtained from the collisional rate coefficients. Implications of the new results for non-thermal H_2 rotational distributions in molecular regions are also investigated

    Choreographic solution to the general relativistic three-body problem

    Get PDF
    We revisit the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and re-discovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general relativistic effects admit a choreographic solution such as the figure eight. We carefully examine general relativistic corrections to initial conditions so that an orbit for a three-body system can be closed and a figure eight. This solution is still choreographic. This illustration suggests that the general relativistic N-body problem also may admit a certain class of choreographic solutions.Comment: 10 pages, 4 figures, text improved, accepted for publication in PR

    The Yarkovsky Drift's Influence on NEAs: Trends and Predictions with NEOWISE Measurements

    Full text link
    We used WISE-derived geometric albedos (p_V) and diameters, as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predictions for 540 near-Earth asteroids (NEAs) out of the current sample of \sim 8,800 known objects. As ten of the twelve objects with the fastest predicted rates have observed arcs of less than a decade, we list upcoming apparitions of these NEAs to facilitate observations.Comment: Accepted for publication by The Astronomical Journal. 41 pages, 3 figure

    Uniqueness of collinear solutions for the relativistic three-body problem

    Full text link
    Continuing work initiated in an earlier publication [Yamada, Asada, Phys. Rev. D 82, 104019 (2010)], we investigate collinear solutions to the general relativistic three-body problem. We prove the uniqueness of the configuration for given system parameters (the masses and the end-to-end length). First, we show that the equation determining the distance ratio among the three masses, which has been obtained as a seventh-order polynomial in the previous paper, has at most three positive roots, which apparently provide three cases of the distance ratio. It is found, however, that, even for such cases, there exists one physically reasonable root and only one, because the remaining two positive roots do not satisfy the slow motion assumption in the post-Newtonian approximation and are thus discarded. This means that, especially for the restricted three-body problem, exactly three positions of a third body are true even at the post-Newtonian order. They are relativistic counterparts of the Newtonian Lagrange points L1, L2 and L3. We show also that, for the same masses and full length, the angular velocity of the post-Newtonian collinear configuration is smaller than that for the Newtonian case. Provided that the masses and angular rate are fixed, the relativistic end-to-end length is shorter than the Newtonian one.Comment: 18 pages, 1 figure; typos corrected, text improved; accepted by PR

    Collinear solution to the general relativistic three-body problem

    Full text link
    The three-body problem is reexamined in the framework of general relativity. The Newtonian three-body problem admits Euler's collinear solution, where three bodies move around the common center of mass with the same orbital period and always line up. The solution is unstable. Hence it is unlikely that such a simple configuration would exist owing to general relativistic forces dependent not only on the masses but also on the velocity of each body. However, we show that the collinear solution remains true with a correction to the spatial separation between masses. Relativistic corrections to the Sun-Jupiter Lagrange points L1, L2 and L3 are also evaluated.Comment: 12 pages, 2 figures, accepted for publication in PR

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper
    corecore