3,991 research outputs found

    On Putting Knowledge 'First'

    Get PDF
    There is a New Idea in epistemology. It goes by the name of ‘knowledge first,’ and it is particularly associated with Timothy Williamson’s book Knowledge and Its Limits. In slogan form, to put knowledge first is to treat knowledge as basic or fundamental, and to explain other states—belief, justification, maybe even content itself—in terms of knowledge, instead of vice versa. The idea has proven enormously interesting, and equally controversial. But deep foundational questions about its actual content remain relatively unexplored. We think that a wide variety of views travel under the banner of ‘knowledge first’ (and that the slogan doesn’t help much with differentiating them). Furthermore, we think it is far from straightforward to draw connections between certain of these views; they are more independent than they are often assumed to be. Our project here is exploratory and clarificatory. We mean to tease apart various ‘knowledge first’ claims, and explore what connections they do or do not have with one another. Our taxonomy is offered in §2, and connections are explored in §3. The result, we hope, will be a clearer understanding of just what the knowledge first theses are. We conclude, in §4, with some brief suggestions as to how we think the various theses might be evaluated

    Universal transition diagram from dormant to actively accreting supermassive black holes

    Get PDF
    The vast majority of supermassive black holes (SMBHs) in the local universe exhibit levels of activity much lower than those expected from gas supplying rates onto the galactic nuclei, and only a small fraction of silent SMBHs can turn into active galactic nuclei. Revisiting observational data of very nearby SMBHs whose gravitational spheres of influence are spatially reached by the Chandra X-ray satellite, we find that the level of BH activity drastically increases from the quiescent phase when the inflow rate outside of the BH influence radius is higher than 0.1% of the Eddington accretion rate. We also show that the relation between the nuclear luminosity and gas accretion rate from the BH influence radius measured from X-ray observations is well described by the universal state transition of accreting SMBHs, as predicted by recent hydrodynamical simulations with radiative cooling and BH feedback. After the state transition, young massive stars should form naturally in the nucleus, as observed in the case of the nearest SMBH, Sagittarius A^\ast, which is currently quiescent but was recently active.Comment: 9 pages (main text), 2 figures, 1 table, accepted for publication in Ap

    Excellent daytime seeing at Dome Fuji on the Antarctic plateau

    Full text link
    Context. Dome Fuji, the second highest region on the Antarctic plateau, is expected to have some of the best astronomical seeing on Earth. However, site testing at Dome Fuji is still in its very early stages. Aims. To investigate the astronomical seeing in the free atmosphere above Dome Fuji, and to determine the height of the surface boundary layer. Methods. A Differential Image Motion Monitor was used to measure the seeing in the visible (472 nm) at a height of 11 m above the snow surface at Dome Fuji during the austral summer of 2012/2013. Results. Seeing below 0.2'' has been observed. The seeing often has a local minimum of ~0.3'' near 18 h local time. Some periods of excellent seeing, 0.3'' or smaller, were also observed, sometimes extending for several hours at local midnight. The median seeing is higher, at 0.52''---this large value is believed to be caused by periods when the telescope was within the turbulent boundary layer. Conclusions. The diurnal variation of the daytime seeing at Dome Fuji is similar to that reported for Dome C, and the height of the surface boundary layer is consistent with previous simulations for Dome Fuji. The free atmosphere seeing is ~0.2'', and the height of the surface boundary layer can be as low as ~11 m.Comment: 4 pages, 6 figures, Submitted to Astronomy & Astrophysics (letter

    Effectively Closed Infinite-Genus Surfaces and the String Coupling

    Full text link
    The class of effectively closed infinite-genus surfaces, defining the completion of the domain of string perturbation theory, can be included in the category OGO_G, which is characterized by the vanishing capacity of the ideal boundary. The cardinality of the maximal set of endpoints is shown to be 2^{\mit N}. The product of the coefficient of the genus-g superstring amplitude in four dimensions by 2g2^g in the gg\to \infty limit is an exponential function of the genus with a base comparable in magnitude to the unified gauge coupling. The value of the string coupling is consistent with the characteristics of configurations which provide a dominant contribution to a finite vacuum amplitude.Comment: TeX, 33 page

    Electronic stress tensor analysis of hydrogenated palladium clusters

    Get PDF
    We study the chemical bonds of small palladium clusters Pd_n (n=2-9) saturated by hydrogen atoms using electronic stress tensor. Our calculation includes bond orders which are recently proposed based on the stress tensor. It is shown that our bond orders can classify the different types of chemical bonds in those clusters. In particular, we discuss Pd-H bonds associated with the H atoms with high coordination numbers and the difference of H-H bonds in the different Pd clusters from viewpoint of the electronic stress tensor. The notion of "pseudo-spindle structure" is proposed as the region between two atoms where the largest eigenvalue of the electronic stress tensor is negative and corresponding eigenvectors forming a pattern which connects them.Comment: 22 pages, 13 figures, published online, Theoretical Chemistry Account

    CDW Ordering in Stripe Phase of Underdoped Cuprates

    Full text link
    The in-plane resistivity and out-of-plane resistivity of non-superconducting RBCO (R = Y, Tm) and Fe-doped Bi2212 single crystals are discussed. The comparison of electrical transport properties of the cuprates and quasi-one dimensional (1D) (TMTSF)2PF6 organic conductor suggests that RBCO and Bi2212 exhibit 1D transport properties, and the step rise at low temperatures in the resistivities of the cuprates and quasi-1D organic conductor is due to charge-density-wave ordering. We discuss also phonon-electron interactions in cuprates at low temperatures.Comment: 10 pages including 4 figure
    corecore