62,929 research outputs found

    Escaping the crunch: gravitational effects in classical transitions

    Get PDF
    During eternal inflation, a landscape of vacua can be populated by the nucleation of bubbles. These bubbles inevitably collide, and collisions sometimes displace the field into a new minimum in a process known as a classical transition. In this paper, we examine some new features of classical transitions that arise when gravitational effects are included. Using the junction condition formalism, we study the conditions for energy conservation in detail, and solve explicitly for the types of allowed classical transition geometries. We show that the repulsive nature of domain walls, and the de Sitter expansion associated with a positive energy minimum, can allow for classical transitions to vacua of higher energy than that of the colliding bubbles. Transitions can be made out of negative or zero energy (terminal) vacua to a de Sitter phase, re-starting eternal inflation, and populating new vacua. However, the classical transition cannot produce vacua with energy higher than the original parent vacuum, which agrees with previous results on the construction of pockets of false vacuum. We briefly comment on the possible implications of these results for various measure proposals in eternal inflation.Comment: 21 pages, 10 figure

    Electron beam compression with electric and magnetic fields

    Get PDF
    Electron beam compression with electrostatic and magnetostatic field

    A new puzzle for random interaction

    Get PDF
    We continue a series of numerical experiments on many-body systems with random two-body interactions, by examining correlations in ratios in excitation energies of yrast JJ = 0, 2, 4, 6, 8 states. Previous studies, limited only to JJ = 0,2,4 states, had shown strong correlations in boson systems but not fermion systems. By including J≥6J \ge 6 states and considering different scatter plots, strong and realistic correlations appear in both boson and fermion systems. Such correlations are a challenge to explanations of random interactions.Comment: 4 pages, 4 figure

    A comparative study of two 47 Tuc giant stars with different s-process enrichment

    Full text link
    Here we aim to understand the origin of 47 Tuc's La-rich star Lee 4710. We report abundances for O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu, and present a detailed abundance analysis of two 47 Tuc stars with similar stellar parameters but different slow neutron-capture (s-)process enrichment. Star Lee 4710 has the highest known La abundance ratio in this cluster ([La/Fe] = 1.14), and star Lee 4626 is known to have normal s-process abundances (e.g., [Ba/Eu]<0<0). The nucleosynthetic pattern of elements with Z≳\gtrsim56 for star Lee 4710 agrees with the predicted yields of a 1.3M⊙1.3M_{\odot} asymptotic giant branch (AGB) star. Therefore, Lee 4710 may have been enriched by mass transfer from a more massive AGB companion, which is compatible with its location far away from the center of this relatively metal-rich ([Fe/H]∼−0.7\sim-0.7) globular cluster. A further analysis comparing the abundance pattern of Lee 4710 with data available in the literature reveals that nine out of the ∼200\sim200 47 Tuc stars previously studied show strong s-process enhancements that point towards later enrichment by more massive AGB stars.Comment: ApJL in press. 6 pages, 4 figure

    Exact dynamical response of an N-electron quantum dot subject to a time-dependent potential

    Full text link
    We calculate analytically the exact dynamical response of a droplet of N interacting electrons in a quantum dot with an arbitrarily time-dependent parabolic confinement potential \omega(t) and a perpendicular magnetic field. We find that, for certain frequency ranges, a sinusoidal perturbation acts like an attractive effective interaction between electrons. In the absence of a time-averaged confinement potential, the N electrons can bind together to form a stable, free-standing droplet.Comment: 10 pages, RevTex, 3 Postscript figures. This version to appear as a Rapid Communication in PR

    Imaging and quantum efficiency measurement of chromium emitters in diamond

    Get PDF
    We present direct imaging of the emission pattern of individual chromium-based single photon emitters in diamond and measure their quantum efficiency. By imaging the excited state transition dipole intensity distribution in the back focal plane of high numerical aperture objective, we determined that the emission dipole is oriented nearly orthogonal to the diamond-air interface. Employing ion implantation techniques, the emitters were engineered with various proximities from the diamond-air interface. By comparing the decay rates from the single chromium emitters at different depths in the diamond crystal, an average quantum efficiency of 28% was measured.Comment: 11 pages and 4 figure
    • …
    corecore