1,222 research outputs found

    On the pulsating strings in Sasaki-Einstein spaces

    Get PDF
    We study the class of pulsating strings in AdS_5 x Y^{p,q} and AdS_5 x L^{p,q,r}. Using a generalized ansatz for pulsating string configurations, we find new solutions for this class in terms of Heun functions, and derive the particular case of AdS_5 x T^{1,1}, which was analyzed in arXiv:1006.1539 [hep-th]. Unfortunately, Heun functions are still little studied, and we are not able to quantize the theory quasi-classically and obtain the first corrections to the energy. The latter, due to AdS/CFT correspondence, is supposed to give the anomalous dimensions of operators of the gauge theory dual N=1 superconformal field theory.Comment: 9 pages, talk given at the 2nd Int. Conference AMiTaNS, 21-26 June 2010, Sozopol, Bulgaria, organized by EAC (Euro-American Consortium) for Promoting AMiTaNS, to appear in the Proceedings of 2nd Int. Conference AMiTaN

    Weak electricity of the Nucleon in the Chiral Quark-Soliton Model

    Get PDF
    The induced pseudotensor constant (weak electricity) of the nucleon is calculated in the framework of the chiral quark soliton model. This quantity originates from the G-parity violation and hence is proportional to mu−mdm_u-m_d. We obtain for mu−md=−5MeVm_u-m_d=-5 MeV a value of gT/gA=−0.0038g_T/g_A =-0.0038.Comment: The final version. Accepted for publication in Phys. Rev.

    Attosecond time-scale intra-atomic phase matching of high harmonic generation

    Get PDF
    Includes bibliographical references (page 5461).Using a model of high-harmonic generation that couples a fully quantum calculation with a semi-classical electron trajectory picture, we show that a new type of phase matching is possible when an atom is driven by an optimal optical waveform. For an optimized laser pulse shape, strong constructive interference is obtained in the frequency domain between emissions from different electron trajectories, thereby selectively enhancing a particular harmonic order. This work demonstrates that coherent control in the strong-field regime is possible by adjusting the peaks of a laser field on an attosecond time scale

    Public access defibrillation: Suppression of 16.7 Hz interference generated by the power supply of the railway systems

    Get PDF
    BACKGROUND: A specific problem using the public access defibrillators (PADs) arises at the railway stations. Some countries as Germany, Austria, Switzerland, Norway and Sweden are using AC railroad net power-supply system with rated 16.7 Hz frequency modulated from 15.69 Hz to 17.36 Hz. The power supply frequency contaminates the electrocardiogram (ECG). It is difficult to be suppressed or eliminated due to the fact that it considerably overlaps the frequency spectra of the ECG. The interference impedes the automated decision of the PADs whether a patient should be (or should not be) shocked. The aim of this study is the suppression of the 16.7 Hz interference generated by the power supply of the railway systems. METHODS: Software solution using adaptive filtering method was proposed for 16.7 Hz interference suppression. The optimal performance of the filter is achieved, embedding a reference channel in the PADs to record the interference. The method was tested with ECGs from AHA database. RESULTS: The method was tested with patients of normal sinus rhythms, symptoms of tachycardia and ventricular fibrillation. Simulated interference with frequency modulation from 15.69 Hz to 17.36 Hz changing at a rate of 2% per second was added to the ECGs, and then processed by the suggested adaptive filtering. The method totally suppresses the noise with no visible distortions of the original signals. CONCLUSION: The proposed adaptive filter for noise suppression generated by the power supply of the railway systems has a simple structure requiring a low level of computational resources, but a good reference signal as well

    Fourier-Galerkin method for 2D solitons of Boussinesq equation

    Get PDF
    Abstract We develop a Fourier-Galerkin spectral technique for computing the stationary solutions of 2D generalized wave equations. To this end a special complete orthonormal system of functions in L 2 (−∞, ∞) is used for which product formula is available. The exponential rate of convergence is shown. As a featuring example we consider the Proper Boussinesq Equation (PBE) in 2D and obtain the shapes of the stationary propagating localized waves. The technique is thoroughly validated and compared to other numerical results when possible

    Spin-dependent twist-4 matrix elements from the instanton vacuum: Flavor-singlet and nonsinglet

    Get PDF
    We estimate the twist-4 spin-1 nucleon matrix element f_2 in an instanton-based description of the QCD vacuum. In addition to the flavor-nonsinglet we compute also the flavor-singlet matrix element, which appears in next-to-leading order of the (1/N_c)-expansion. The corresponding twist-3 spin-2 matrix elements d_2 are suppressed in the packing fraction of the instanton medium, (\bar \rho)/(\bar R) << 1. We use our results to estimate the leading (1/Q^2) power corrections to the first moment of the proton and neutron spin structure functions G_1, as well as the intrinsic charm contribution to the nucleon spin.Comment: 17 pages, 4 eps figures include
    • …
    corecore