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Attosecond Time-Scale Intra-atomic Phase Matching of High Harmonic Generation
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Using a model of high-harmonic generation that couples a fully quantum calculation with a semi-
classical electron trajectory picture, we show that a new type of phase matching is possible when an
atom is driven by an optimal optical waveform. For an optimized laser pulse shape, strong constructive
interference is obtained in the frequency domain between emissions from different electron trajectories,
thereby selectively enhancing a particular harmonic order. This work demonstrates that coherent control
in the strong-field regime is possible by adjusting the peaks of a laser field on an attosecond time scale.
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The development of high-power short-pulse lasers has
led to the emergence of a new area of research in “extreme”
nonlinear optics [1-5]. Light pulses shorter than 20 fs
make it possible to generate high harmonics of the funda-
mental laser up to orders >300 [6,7]. New phase matching
techniques have improved the efficiency and spatial coher-
ence of these sources [3]. By using an optical pulse with
linear [8,9] or elliptical [10,11] polarization, attosecond-
duration x-ray pulses may be possible, thereby accessing
a “single-cycle” regime of laser-atom interaction. In this
paper, we present a new regime of laser-atom interaction,
where “strong-field” coherent control is achieved by pre-
cisely shaping a laser pulse on a subcycle or attosecond
time scale. We show that a new type of “intra-atom” phase
matching is possible as a result, where an atom is driven by
an optimal optical waveform. For an optimized laser pulse
shape, the x-ray emissions from adjacent half-cycles of the
laser pulse can add in phase. This leads to strong construc-
tive interference in the frequency domain between emis-
sions from electron trajectories from different half-cycles,
thereby selectively enhancing a particular harmonic order.
This mechanism is based on the interaction of a short pulse
with a single atom—in contrast to traditional phase match-
ing techniques that depend on propagation effects.

Coherent control techniques have been applied success-
fully to a number of systems in the past few years [12].
At lower intensities, phase-only laser pulse-shape control
has been used to suppress or enhance the transition proba-
bility for two-photon absorption, in a way that can be
predicted through analytical theory [13]. The design and
control of atomic Rydberg wave packets has also recently
been demonstrated [14]. In the case of high-harmonic gen-
eration (HHG), the effects of simple linear chirps of the
driving pulse on the x-ray emission have been studied [15],
as well as the use of bichromatic laser fields [16]. Using a
laser pulse with a simple linear chirp, it is possible to ad-
just the linewidth of the comb of harmonics when the phase
of the laser compensates for the intensity-dependent phase
accumulated by the electron in its trajectory. However,
simple linear chirps do not allow dramatic enhancements
of the output, or any selectivity of individual harmonics.
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Recently, feedback control of the phase of a laser pulse
has produced the optimal nonlinear chirp to selectively in-
crease in the brightness of a particular high-harmonic or-
der [4]. This raises the possibility of a new phase matching
mechanism that allows for both enhancements and selec-
tivity of the HHG process.

In the quasiclassical model, HHG results from rescatter-
ing of an electron, ionized in a strong laser field, with its
parent ion [17,18]. In our approach, each harmonic order
appears as a result of a constructive or destructive interfer-
ence between the contributions of a number of rescattered
electron trajectories. Since the amplitude and the phase of
the contribution of a given electron trajectory to the dipole
moment of the atom are directly related to the amplitude
and the phase of the laser field at the time of ionization,
it is possible that by shaping a laser pulse one may con-
trol the net x-ray emission that arises from several electron
trajectories. In this way, a significant redirection of en-
ergy between the different harmonics within the harmonic
comb is possible. Such improvements are not possible by
simply changing the linear chirp of the driving laser pulse.
We note that the results presented here do not take into ac-
count propagation effects. This is a reasonable assumption
since we use a phase-matched geometry [3], where propa-
gation effects are smaller than the single-atom effects con-
sidered here.

Our approach for demonstrating intra-atom phase
matching is to calculate the phase of the x-ray emission
resulting from the process of recollision by isolating the
contribution to each harmonic from electron trajectories
initiated by various half-cycles of the laser pulse. The
total phase shift of the emission corresponding to a given
harmonic order can be represented as a sum of the phase
of the laser pulse with the phase of the induced dipole
moment. In the quasiclassical approximation, the phase of
the induced dipole is determined by the value of the action
at its saddle points [18]. This corresponds to the contribu-
tion of the electron trajectories relevant to this particular
emission. In the case of a linearly polarized strong field,
we obtain the following approximate expression for the
dipole moment as a function of time:
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where & is a positive regularization constant, and we
have neglected the bare atomic dipole moments (atomic
units are used here). In Eq. (1), we assume that the
electron is ionized at a time 7, by the electric field
E(t), and that it returns to the parent ion at a time
7 after “free” motion in response to the laser field.
Also, in Eq. (1), y(rp) = [o w(t)dt, where w(t) is
the Ammosov-Delone-Krainov tunneling ionization rate
[19], and py(r,75) = —1/(r — 1) [] A(t)dt’ is the
stationary momentum, for which the quasiclassical action
S(ps,7,7p) = f; dt{%[ps + A(t)P + 1,} has saddle
points that correspond to the most relevant electron
trajectories. Here, A(f) is the vector potential, I, is
the ionization potential, and we assume that the degree
of ionization is low in agreement with experiment [4].
The integral in Eq. (1) can be converted into a sum by
calculating the saddle points of the action with respect
to the ionization time 7, [20,21]. For the quasifree
electron, the saddle-point condition reduces to an implicit
connection between the saddle-point time 7, and the
return time 7; A(7p) = 1/(7 — Tpy) f;”A(t’) dt'. In
fact, the calculation of the time-dependent dipole moment
in Eq. (1) can be simplified further by assuming that for
each time 7 the major contribution corresponds to only
those electrons which have been ionized in the interval
(r — T,7), where T is the period of the laser light. By
comparing the harmonic spectrum calculated by Eq. (1)
with a full numerical solution of the Schrédinger equation,
we verified that there is good agreement between the
semiclassical theory and the fully quantum theory, for
laser pulses longer than 10 fs (800 nm) where nonadia-
batic effects can be neglected [8,22].

In the case of a free electron, simple integration reveals
that the action, and, hence, the dipole phase, is propor-
tional to the laser intensity. Near cutoff, harmonics are
generated by only a few electron trajectories corresponding
to electrons ionized near the peak of the pulse, and there-
fore the phase of these harmonics is close to quadratic.
Past work was demonstrated that this intrinsic phase can
be compensated for by a linearly chirped laser pulse, but
without any enhancement or selectivity of the harmonics
[15,23,24]. In contrast, in the midplateau region of the
harmonic spectrum, more electron trajectories contribute
to the emission. Some of these trajectories correspond to
ionization times further from the peak of the laser pulse,
and therefore a more complex (nonlinear) phase modula-
tion of the harmonic orders appears. Using a laser pulse
with an appropriate nonlinear amplitude and phase modu-
lation can therefore control this nonlinear phase modula-
tion of the atomic dipole, leading to a more temporally
coherent x-ray emission.

To find the optimal amplitude and phase modulation that
can enhance the intensity of a single harmonic order, we
use a statistical procedure based on an evolutionary strat-
egy process [4]. We start with a pulse of duration 15 fs and
peak intensity in the range of 3 X 10'* W/cm?, which in-
teracts with an argon atom (I, = 0.58 a.u.). To simulate
the action of a phase-only pulse shaper [25], we transform
the laser pulse into the spectral domain, where the pulse
spectrum is spread over and adjusted by 12 equally spaced
sample points or “control knobs.” By adjusting only the
phase of the light pulse in the spectral domain, the pulse
energy is conserved between different trial pulse shapes.
However, this results in amplitude and phase modulation
in the time domain. We use a “population” of 20 trial pulse
shapes or “members.” Initially, the control knobs are set to
random values to sample the spectral phase space. Next,
the harmonic spectra produced by these pulses are calcu-
lated, and the two pulses which maximize the intensity of
the 25th harmonic are selected as “parents.” Nine copies
of each parent are made, and then “mutated” by adding
Gaussian noise with some standard deviation to each spec-
tral phase control knob. A new population is then formed
by combining the parents and the mutated children. The
new population is retested for optimal x-ray generation us-
ing the HHG algorithm, and the procedure repeated. To
ensure convergence, we reduce the width of the Gauss-
ian noise spectrum that mutates the spectral phases at each
successive iteration. Typically, the algorithm converges
to some optimal solution after approximately 20 itera-
tions. We have successfully optimized a range of harmonic
orders, both experimentally and theoretically, using this
approach.

Figure 1 shows the initial transform-limited laser pulse
[Fig. 1(a)] and the laser pulse for which the 25th harmonic
is selectively optimized in intensity [Fig. 1(b)]. It is ap-
parent that, as a result of pulse shaping, the pulse becomes
longer and asymmetrical. Figure 2 shows the correspond-
ing harmonic emission predicted before (dotted line) and
after (solid line) optimization, for the 25th harmonic in
argon. The optimization process improves both the peak
intensity and the signal-to-noise ratio of the harmonic. An
increase in the peak intensity by about an order of magni-
tude is obtained, in excellent agreement with experiment
[4]. Figure 1(b) shows a comparison between the experi-
mental and theoretical pulse shapes that selectively opti-
mize a single harmonic. There is very good agreement
between the experimentally observed nonlinear chirp of the
laser pulse and the theoretically predicted one, particularly
on the leading edge and near the peak of the pulse where
the harmonics are generated. The phase on the trailing
edge of the pulse is not expected to agree as well because
harmonics from there do not contribute to the feedback sig-
nal—at the higher ionization levels on the trailing edge,
macroscopic phase matching is less effective.

To obtain an intuitively clear insight of the optimization
process, we calculate the contributions of the individual
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FIG. 1. (a) Calculated laser pulse shape before (dashed line)
and after (solid line) optimization. Each period is 2.67 fs for
the unoptimized pulse. (b) Comparison between the optimized
experimental and theoretical laser pulse amplitude and phase. A
transform limited pulse would have a flat phase.

electron trajectories to a particular harmonic. We Fourier-
transform the time-dependent dipole moment given by
Eq. (1), and then calculate the Fourier integral by using
the saddle point technique with respect to the return time
7 [20]. The resulting expression for the amplitude of the
mth harmonic is a sum of the complex contribution from
each trajectory (s) that contributed to the mth harmonic
order, omitting some slowly varying terms:

dmOCZ[ 7
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where 7; is the saddle-point value of 7, which is de-
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w,,. This relation poses an additional restriction on the
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FIG. 2. Output at the 25th harmonic before (dashed line) and
after (solid line) optimization.
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number of relevant trajectories, by limiting them to only
those that contribute to the harmonic of interest. Equa-
tion (2) is a spectral representation of the dipole moment,
allowing one to calculate directly the amplitude and phase
of the contributions of the individual trajectories from each
half-cycle. In our simulations, we observe the same de-
gree of enhancement for a given harmonic for a variety of
pulse shapes, provided they have the same nonlinear chirp
(within =5%).

Figure 3 illustrates the essence of the optimization pro-
cess. In Fig. 3(a), the dotted line shows the time depen-
dence of the phase of the 25th harmonic when generated
by a transform-limited pulse. This dependence is close to
parabolic, which reflects the effect of the laser-induced in-
trinsic phase of the atomic dipole. In contrast, the phase
dependence for the optimized laser pulse (solid line) is
almost flat. The phase has been adjusted by less than
25 as—considerably smaller than the period of the 25th
harmonic (106 as). This effect can be interpreted as a new
type of phase matching that depends on a single atom in-
teracting with a shaped light pulse, ensuring that the phases
of the contributions from different electron trajectories are
locked within a narrow time interval. This leads to strong
constructive interference effects in the frequency domain,
optimizing the temporal coherence of the HHG. The
physical origin of this intra-atom phase matching is the
optimized nonlinear chirp of the laser pulse. This high-
order nonlinear chirp determines the “correct” release time
and phase of the various half-cycles of the electromagnetic
field to ensure that the continuum generated during each
half-cycle of the pulse reinforces constructively or destruc-
tively with parts of the continuum generated by adjacent
half-cycles. From a quantum point of view, the optimized
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FIG. 3. (a) Phase distribution of the most relevant trajecto-
ries before (dashed line) and after (solid line) optimization of
the 25th harmonic as a function of ionization time; (b) phase
distributions of trajectories which contribute to 23rd and 29th
harmonics for the field that optimizes the generation of the 25th
harmonic.
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laser field creates an extended electron wave packet with
appropriate spatial modulation along the direction of polar-
ization, which on recollision results in stronger generation
of the optimized harmonic. In contrast, Fig. 3(b) shows the
temporal phase of the trajectories that contribute to the 23th
and 29th harmonic orders for the identical laser pulse shape
which optimizes the 25th harmonic (Fig. 1). The optimal
pulse shape for the 25th harmonic “overcompensates” the
phase for lower-order harmonics and “undercompensates”
the phase for higher-order harmonics.

This novel type of phase matching occurs within a single
atom, and is very distinct from conventional phase match-
ing. In conventional phase matching, the velocity of the
fundamental and harmonic waves are “matched” through-
out an extended interaction medium, thereby increasing the
harmonic output [3]. In contrast, here a single-atom in-
teracts with an optimized optical waveform. This process
also has an analog in mode locked lasers, except that in this
case the constructive interferences occur in time instead of
in frequency. We note that the total integrated x-ray flux,
both experimentally and theoretically, increases as a result
of optimization. Therefore, more laser energy is converted
into x rays as a result of the intra-atom phase matching
process. Finally, this selective optimization could not be
achieved using a flattop, fast rise time, pulse. Even if such
a pulse could be generated experimentally (which is not
possible at present because significantly more bandwidth
would be needed), it would likely enhance all harmonics,
without any selectivity. Using optimally shaped pulses, we
achieve a higher degree of control by combining the non-
linear chirp of a laser pulse with the nonlinear phase of
the HHG. The physical reason for our ability to control
HHG is that the harmonic emission is due to a high-order
electronic nonlinearity with a finite response time. This
work is the first to take advantage of this noninstantaneous
response to enhance a nonlinearity.

In conclusion, we show that a new type of phase match-
ing is possible when an atom is driven by an optimally
shaped laser pulse. For an optimized laser pulse, strong
constructive interference can be obtained between x rays
generated by different half-cycles of a laser pulse. This

work demonstrates that coherent control of electronic pro-
cesses in the strong-field regime is possible by adjusting
the phase of a laser pulse on a subcycle, attosecond, time
scale. We also demonstrate the use of a learning algo-
rithm to uncover new physics. This work has implications
not only for HHG, but also possibly for other high-field
processes [12] such as strong-field dissociation using opti-
mally shaped laser pulses.
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