375 research outputs found

    Optical detection of a BCS phase transition in a trapped gas of fermionic atoms

    Full text link
    Light scattering from a spin-polarized degenerate Fermi gas of trapped ultracold Li-6 atoms is studied. We find that the scattered light contains information which directly reflects the quantum pair correlation due to the formation of atomic Cooper pairs resulting from a BCS phase transition to a superfluid state. Evidence for pairing can be observed in both the space and time domains.Comment: 8 pages, 4 figures, revte

    Growth and Collapse of a Bose Condensate with Attractive Interactions

    Full text link
    We consider the dynamics of a quantum degenerate trapped gas of Li-7 atoms. Because the atoms have a negative s-wave scattering length, a Bose condensate of Li-7 becomes mechanically unstable when the number of condensate atoms approaches a maximum value. We calculate the dynamics of the collapse that occurs when the unstable point is reached. In addition, we use the quantum Boltzmann equation to investigate the nonequilibrium kinetics of the atomic distribution during and after evaporative cooling. The condensate is found to undergo many cycles of growth and collapse before a stationary state is reached.Comment: Four pages of ReVTeX with four postscript figure

    1D to 3D Crossover of a Spin-Imbalanced Fermi Gas

    Get PDF
    We have characterized the one-dimensional (1D) to three-dimensional (3D) crossover of a two-component spin-imbalanced Fermi gas of 6-lithium atoms in a 2D optical lattice by varying the lattice tunneling and the interactions. The gas phase separates, and we detect the phase boundaries using in situ imaging of the inhomogeneous density profiles. The locations of the phases are inverted in 1D as compared to 3D, thus providing a clear signature of the crossover. By scaling the tunneling rate with respect to the pair binding energy, we observe a collapse of the data to a universal crossover point at a scaled tunneling value of 0.025(7).Comment: 5 pages, 4 figure

    The Superfluid State of Atomic Li6 in a Magnetic Trap

    Full text link
    We report on a study of the superfluid state of spin-polarized atomic Li6 confined in a magnetic trap. Density profiles of this degenerate Fermi gas, and the spatial distribution of the BCS order parameter are calculated in the local density approximation. The critical temperature is determined as a function of the number of particles in the trap. Furthermore we consider the mechanical stability of an interacting two-component Fermi gas, both in the case of attractive and repulsive interatomic interactions. For spin-polarized Li6 we also calculate the decay rate of the gas, and show that within the mechanically stable regime of phase space, the lifetime is long enough to perform experiments on the gas below and above the critical temperature if a bias magnetic field of about 5 T is applied. Moreover, we propose that a measurement of the decay rate of the system might signal the presence of the superfluid state.Comment: 16 pages Revtex including 10 figures, submitted to Phys. Rev.

    Deformation of a Trapped Fermi Gas with Unequal Spin Populations

    Full text link
    The real-space densities of a polarized strongly-interacting two-component Fermi gas of 6^6Li atoms reveal two low temperature regimes, both with a fully-paired core. At the lowest temperatures, the unpolarized core deforms with increasing polarization. Sharp boundaries between the core and the excess unpaired atoms are consistent with a phase separation driven by a first-order phase transition. In contrast, at higher temperatures the core does not deform but remains unpolarized up to a critical polarization. The boundaries are not sharp in this case, indicating a partially-polarized shell between the core and the unpaired atoms. The temperature dependence is consistent with a tricritical point in the phase diagram.Comment: Accepted for publication in Physical Review Letter

    Bright soliton trains of trapped Bose-Einstein condensates

    Full text link
    We variationally determine the dynamics of bright soliton trains composed of harmonically trapped Bose-Einstein condensates with attractive interatomic interactions. In particular, we obtain the interaction potential between two solitons. We also discuss the formation of soliton trains due to the quantum mechanical phase fluctuations of a one-dimensional condensate.Comment: 4 pages, 2 figures, submitted to PR

    Feasibility of Experimental Realization of Entangled Bose-Einstein Condensation

    Full text link
    We examine the practical feasibility of the experimental realization of the so-called entangled Bose-Einstein condensation (BEC), occurring in an entangled state of two atoms of different species. We demonstrate that if the energy gap remains vanishing, the entangled BEC persists as the ground state of the concerned model in a wide parameter regime. We establish the experimental accessibility of the isotropic point of the effective parameters, in which the entangled BEC is the exact ground state, as well as the consistency with the generalized Gross-Pitaevskii equations. The transition temperature is estimated. Possible experimental implementations are discussed in detail.Comment: 6 pages, published versio

    Measurement of the Dynamical Structure Factor of a 1D Interacting Fermi Gas

    Full text link
    We present measurements of the dynamical structure factor S(q,ω)S(q,\omega) of an interacting one-dimensional (1D) Fermi gas for small excitation energies. We use the two lowest hyperfine levels of the 6^6Li atom to form a pseudo-spin-1/2 system whose s-wave interactions are tunable via a Feshbach resonance. The atoms are confined to 1D by a two-dimensional optical lattice. Bragg spectroscopy is used to measure a response of the gas to density ("charge") mode excitations at a momentum qq and frequency ω\omega. The spectrum is obtained by varying ω\omega, while the angle between two laser beams determines qq, which is fixed to be less than the Fermi momentum kFk_\textrm{F}. The measurements agree well with Tomonaga-Luttinger theory
    • …
    corecore