2,376 research outputs found

    Search for Gamma-Ray Burst Classes with the RHESSI Satellite

    Full text link
    A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is studied statistically with respect to duration and hardness ratio. Standard statistical tests are used, such as χ2\chi^2, F-test and the maximum likelihood ratio test, in order to compare the number of GRB groups in the RHESSI database with that of the BATSE database. Previous studies based on the BATSE Catalog claim the existence of an intermediate GRB group, besides the long and short groups. Using only the GRB duration T90T_{90} as information and χ2\chi^2 or F-test, we have not found any statistically significant intermediate group in the RHESSI data. However, maximum likelihood ratio test reveals a significant intermediate group. Also using the 2-dimensional hardness / T90T_{90} plane, the maximum likelihood analysis reveals a significant intermediate group. Contrary to the BATSE database, the intermediate group in the RHESSI data-set is harder than the long one. The existence of an intermediate group follows not only from the BATSE data-set, but also from the RHESSI one.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 4 figure

    Low-Dimensional Long-Range Topological Charge Structure in the QCD Vacuum

    Get PDF
    While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge density, we present evidence for such structure in pure-glue SU(3) lattice gauge theory. It is found that a typical equilibrium configuration is dominated by two oppositely-charged sign-coherent connected structures (``sheets'') covering about 80% of space-time. Each sheet is built from elementary 3-d cubes connected through 2-d faces, and approximates a low-dimensional curved manifold (or possibly a fractal structure) embedded in the 4-d space. At the heart of the sheet is a ``skeleton'' formed by about 18% of the most intense space-time points organized into a global long-range structure, involving connected parts spreading over maximal possible distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral symmetry breaking.Comment: 4 pages RevTeX, 4 figures; v2: 6 pages, 5 figures, more explanations provided, figure and references added, published versio

    Exotic plasma as classical Hall Liquid

    Full text link
    A non-relativistic plasma model endowed with an ``exotic'' structure associated with the two-parameter central extension of the planar Galilei group is constructed. Introducing a Chern-Simons statistical gauge field provides us with a self-consistent system; when the magnetic field takes a critical value determined by the extension parameters, the fluid becomes incompressible and moves collectively, according to the Hall law.Comment: 11 pages, LaTex, no figures. Revised version: Some details better explained. To appear in Int. Journ. Mod. Phys.

    THREE-FLUID HEAT EXCHANGERS OF TWO AND THREE SURFACES

    Get PDF

    Failure of mean-field approach in out-of-equilibrium Anderson model

    Full text link
    To explore the limitations of the mean field approximation, frequently used in \textit{ab initio} molecular electronics calculations, we study an out-of-equilibrium Anderson impurity model in a scattering formalism. We find regions in the parameter space where both magnetic and non-magnetic solutions are stable. We also observe a hysteresis in the non-equilibrium magnetization and current as a function of the applied bias voltage. The mean field method also predicts incorrectly local moment formation for large biases and a spin polarized current, and unphysical kinks appear in various physical quantities. The mean field approximation thus fails in every region where it predicts local moment formation.Comment: 5 pages, 5 figure

    Properties of iterative Monte Carlo single histogram reweighting

    Full text link
    We present iterative Monte Carlo algorithm for which the temperature variable is attracted by a critical point. The algorithm combines techniques of single histogram reweighting and linear filtering. The 2d Ising model of ferromagnet is studied numerically as an illustration. In that case, the iterations uncovered stationary regime with invariant probability distribution function of temperature which is peaked nearly the pseudocritical temperature of specific heat. The sequence of generated temperatures is analyzed in terms of stochastic autoregressive model. The error of histogram reweighting can be better understood within the suggested model. The presented model yields a simple relation, connecting variance of pseudocritical temperature and parameter of linear filtering.Comment: 3 figure
    corecore