31 research outputs found

    Double- and multi-femtosecond pulses produced by birefringent crystals for the generation of 2D laser-induced structures on a stainless steel surface

    Get PDF
    Laser-induced textures have been proven to be excellent solutions for modifying wetting, friction, biocompatibility, and optical properties of solids. The possibility to generate 2D-submicron morphologies by laser processing has been demonstrated recently. Employing double-pulse irradiation, it is possible to control the induced structures and to fabricate novel and more complex 2D-textures. Nevertheless, double-pulse irradiation often implies the use of sophisticated setups for modifying the pulse polarization and temporal profile. Here, we show the generation of homogeneous 2D-LIPSS (laser-induced periodic surface structures) over large areas utilizing a simple array of birefringent crystals. Linearly and circularly polarized pulses were applied, and the optimum process window was defined for both. The results are compared to previous studies, which include a delay line, and the reproducibility between the two techniques is validated. As a result of a systematic study of the process parameters, the obtained morphology was found to depend both on the interplay between fluence and inter-pulse delay, as well as on the number of incident pulses. The obtained structures were characterized via SEM (scanning electron microscopy) and atomic force microscopy. We believe that our results represent a novel approach to surface structuring, primed for introduction in an industrial environment

    Graphene Mode-Locked Ultrafast Laser

    Full text link
    Graphene is at the center of a significant research effort. Near-ballistic transport at room temperature and high mobility make it a potential material for nanoelectronics. Its electronic and mechanical properties are also ideal for micro and nanomechanical systems, thin-film transistors and transparent and conductive composites and electrodes. Here we exploit the optoelectronic properties of graphene to realize an ultrafast laser. A graphene-polymer composite is fabricated using wet-chemistry techniques. Pauli blocking following intense illumination results in saturable absorption, independent of wavelength. This is used to passively mode-lock an Erbium-doped fibre laser working at 1559nm, with a 5.24nm spectral bandwidth and ~460fs pulse duration, paving the way to graphene-based photonics

    High-power picosecond pulses by SPM-induced spectral compression in a fiber amplifier

    No full text
    The fiber based generation of nearly transform-limited 10-ps pulses with 200 kW peak power (97 W average power) based on SPM-induced spectral compression is reported. Efficient second harmonic generation applying this source is also discussed

    Multi-meter fiber-delivery and compression of milli-joule femtosecond laser and fiber-aided micromachining

    No full text
    Up to 10 meter-long Kagome hollow-core-photonic-crystal-fibers were used to successfully deliver Yb-laser pulses with milli-Joule energy-level and 600-femtosecond pulsewidth in robustly single-mode fashion. Self-compression to ~50fs, and intensity-level nearing petawatt/cm2 were achieved. Free focusing-optics laser-micromachining is demonstrated on different materials. \ua9 OSA 2013

    Vertical-external-cavity semiconductor lasers

    No full text
    Surface-emitting semiconductor lasers can make use of external cavities and optical pumping techniques to achieve a combination of high continuous-wave output power and near-diffraction-limited beam quality that is not matched by any other type of semiconductor source. The ready access to the laser mode that the external cavity provides has been exploited for applications such as intra-cavity frequency doubling and passive mode-locking. The purpose of this Topical Review is to outline the operating principles of these versatile lasers and summarize the capabilities of devices that have been demonstrated so far. Particular attention is paid to the generation of near-transform-limited sub-picosecond pulses in passively mode-locked surface-emitting lasers, which are potentially of interest as compact sources of ultrashort pulses at high average power that can be operated readily at repetition rates of many gigahertz

    3D-Terahertz Tomography using a more realistic beam propagation model applied to different image reconstruction methods

    No full text
    In this paper, a model of the beam propagation is developed according to the physical properties of THz waves used in THz computed tomography (CT) scan imaging. This model is first included in an acquisition simulator to observe and estimate the impact of the Gaussian beam intensity profile on the projection sets. Second, the model is introduced in several inversion methods as a convolution filter to perform efficient tomographic reconstructions of simulated and real acquired objects. Results obtained with three reconstruction methods (BFP, SART and OSEM) are compared to the techniques proposed in this paper. We will demonstrate an increase of the overall quality and accuracy of the 3D reconstructions
    corecore