2,206 research outputs found

    Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities

    Get PDF
    Small polaron carrier density in epitaxial, doped CeO_2 thin films under low oxygen partial pressure was determined from electrochemically-measured capacitance after accounting for interfacial effects and shown to agree well with bulk values

    Lessons from upstream soil conservation measures to mitigate soil erosion and its impact on upstream and downstream users of the Nile River

    Get PDF
    A study was conducted to evaluate the effects of soil bunds stabilized with vetiver grass (V. zizanioides) and tree lucerne (C. palmensis) on selected soil physical and chemical properties, bund height, inter-terrace slope and barley (Hordeum vulgare L.) yield in Absela site, Banja Shikudad District, Awi administrative Zone of the Amhara National Regional State (ANRS) located in the Blue Nile Basin. The experiment had five treatments that included non-conserved land (control), a 9-year old soil bund stabilized with tree lucerne, a 9-year old soil bund stabilized with vetiver grass, a 9-year old sole soil bund, and a 6-year old soil bund stabilized with tree lucerne. Data were analyzed using one-way analysis of variance (ANOVA) and mean values for the treatments were separated using the Duncan Multiple Range Test. Results of the experiment indicated that organic carbon (OC), total nitrogen (N), bulk density, infiltration rate, bund height, and inter-terrace slope are significantly (p?0.05) affected by soil conservation measures. The non-conserved fields had significantly lower OC, total N, and infiltration rate; whereas higher bulk density as compared to the conserved fields with different conservation measures. However, no significant differences in bulk density were observed among the conservation methods. The field treated with 9-year old soil bund stabilized with tree lucerne or sole soil bund had significantly higher OC content than all other treatments. Fields having 6-year old soil bunds had lower OC and total N when compared to fields having 9-year old soil bunds irrespective of their method of stabilization. Fields with soil bunds stabilized with vetiver grass had the highest bund height and the lowest inter-terrace slope than fields with the remaining conservation measures. Barley grain and straw yields were significantly (P<0.05) greater in both the soil accumulation and loss zones of the conserved fields than the non-conserved (control) ones. In the accumulation zone, fields with the 9-year old soil bund stabilized with tree lucerne and those with the 9-year old sole soil bund gave higher grain yields (1878.5 kg ha-1 and 1712.5 kg ha-1, respectively) than fields having 9-year old soil bund stabilized with vetiver grass (1187 kg ha-1) and 6-year old soil bund stabilized with tree lucerne (1284.25 kg ha-1). When we compare the accumulation and the loss zones, the average grain yield obtained from the accumulation zones (averaged over all the Lessons from Upstream Soil Conservation Measures to Mitigate Soil Erosion and its Impact on Upstream and Downstream Users of the Nile River.Length: pp.170-183ErosionLand degradationSoil conservationBundsWater conservationSoil properties

    High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes

    Get PDF
    Fuel cells, and in particular solid-oxide fuel cells (SOFCs), enable high-efficiency conversion of chemical fuels into useful electrical energy and, as such, are expected to play a major role in a sustainable-energy future. A key step in the fuel-cell energy-conversion process is the electro-oxidation of the fuel at the anode. There has been increasing evidence in recent years that the presence of CeO_2-based oxides (ceria) in the anodes of SOFCs with oxygen-ion-conducting electrolytes significantly lowers the activation overpotential for hydrogen oxidation. Most of these studies, however, employ porous, composite electrode structures with ill-defined geometry and uncontrolled interfacial properties. Accordingly, the means by which electrocatalysis is enhanced has remained unclear. Here we demonstrate unambiguously, through the use of ceria–metal structures with well-defined geometries and interfaces, that the near-equilibrium H_2 oxidation reaction pathway is dominated by electrocatalysis at the oxide/gas interface with minimal contributions from the oxide/metal/gas triple-phase boundaries, even for structures with reaction-site densities approaching those of commercial SOFCs. This insight points towards ceria nanostructuring as a route to enhanced activity, rather than the traditional paradigm of metal-catalyst nanostructuring

    Preparation of (Pb,Ba)TiO3 powders and highly oriented thin films by a sol-gel process

    Get PDF
    Solid solution Pb1-xBaxTiO3, with particular emphasis on Pb0.5Ba0.5TiO3, was prepared using a sol-gel process incorporating lead acetate trihydrate, barium acetate, and titanium isopropoxide as precursors, acetylacetone (2,4 pentanedione) as a chelating agent, and ethylene glycol as a solvent. The synthesis procedure was optimized by systematically varying acetylacetone: Ti and H2O:Ti molar ratios and calcination temperature. The resulting effects on sol and powder properties were studied using thermogravimetric analysis/differential scanning calorimetry, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and x-ray diffraction (XRD). Crystallization of the perovskite structure occurred at a temperature as low as 450 °C. Thin films were prepared by spin coating on (100) MgO. Pyrolysis temperature and heating rate were varied, and the resultant film properties investigated using field-emission scanning electron microscopy, atomic force microscopy, and XRD. Under optimized conditions, highly oriented films were obtained at a crystallization temperature of 600 °C

    Ionic and Electronic Conductivity of Nanostructured, Samaria-Doped Ceria

    Get PDF
    The ionic and electronic conductivities of samaria doped ceria electrolytes, Ce_(0.85)Sm_(0.15)O_(1.925−δ), with nanometric grain size have been evaluated. Nanostructured bulk specimens were obtained using a combination of high specific-surface-area starting materials and suitable sintering profiles under conventional, pressureless conditions. Bulk specimens with relatively high density (≥92% of theoretical density) and low medium grain size (as small as 33 nm) were achieved. Electrical A.C. impedance spectra were recorded over wide temperature (150 to 650°C) and oxygen partial pressure ranges (0.21 to 10^(−31) atm). Under all measurement conditions the total conductivity decreased monotonically with decreasing grain size. In both the electrolytic and mixed conducting regimes this behavior is attributed to the high number density of high resistance grain boundaries. The results suggest a possible variation in effective grain boundary width with grain size, as well as a possible variation in specific grain boundary resistance with decreasing oxygen partial pressure. No evidence appears for either enhanced reducibility or enhanced electronic conductivity upon nanostructuring

    Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis

    Get PDF
    The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined

    Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H_2O and CO_2

    Get PDF
    Doped CeO_2 with a low specific surface area is thermochemically cycled between MO_2 and MO_(2-δ) using H_2O and CO_2 as oxidants. The system rapidly and selectively produces syngas in the absence of a metal catalyst, and CH_4 in the presence of Ni. The Ni catalyst, which permits intermediate C to form on its surface, is proposed to shift the product from syngas to CH_4

    Methodological Issues in Multistage Genome-Wide Association Studies

    Full text link
    Because of the high cost of commercial genotyping chip technologies, many investigations have used a two-stage design for genome-wide association studies, using part of the sample for an initial discovery of ``promising'' SNPs at a less stringent significance level and the remainder in a joint analysis of just these SNPs using custom genotyping. Typical cost savings of about 50% are possible with this design to obtain comparable levels of overall type I error and power by using about half the sample for stage I and carrying about 0.1% of SNPs forward to the second stage, the optimal design depending primarily upon the ratio of costs per genotype for stages I and II. However, with the rapidly declining costs of the commercial panels, the generally low observed ORs of current studies, and many studies aiming to test multiple hypotheses and multiple endpoints, many investigators are abandoning the two-stage design in favor of simply genotyping all available subjects using a standard high-density panel. Concern is sometimes raised about the absence of a ``replication'' panel in this approach, as required by some high-profile journals, but it must be appreciated that the two-stage design is not a discovery/replication design but simply a more efficient design for discovery using a joint analysis of the data from both stages. Once a subset of highly-significant associations has been discovered, a truly independent ``exact replication'' study is needed in a similar population of the same promising SNPs using similar methods.Comment: Published in at http://dx.doi.org/10.1214/09-STS288 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore