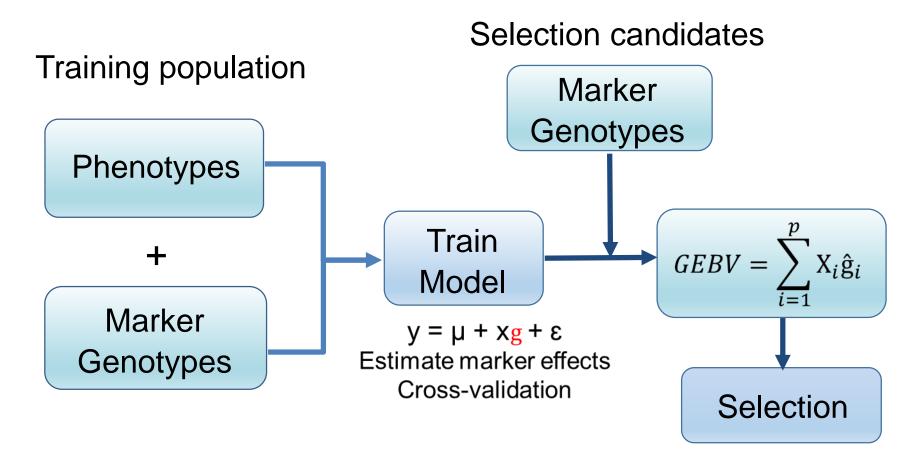
Comparison of Genomic Selection Models for Wheat Breeding

Teketel Haile Ph.D. Candidate


Department of Plant Sciences/Crop Development Centre

Genomic or Genomewide Selection (GS)

- MAS without identifying markers associated with a trait
- Considers all markers without significance test
- Prediction of genomic estimated breeding values (GEBVs)
- Captures major and small effect QTL
- Unbiased marker effect estimates
- No multiple testing

Genomic Selection Procedures

Genomic Selection

- Widely used in livestock breeding programs
 - Long generation interval
 - Milk production on bulls, meat quality
- Improved genetic gain
- Growing interest in crop breeding programs
- Insufficient information for practical application
- Empirical studies are necessary to validate GS in wheat breeding

Hypothesis:

 GS has the potential to predict GEBVs with accuracy sufficient to allow selection without repeated phenotyping.

Objectives:

- 1) To evaluate single and multiple trait GS models for wheat breeding.
- 2) To examine prediction accuracy when modelling G × E interaction.

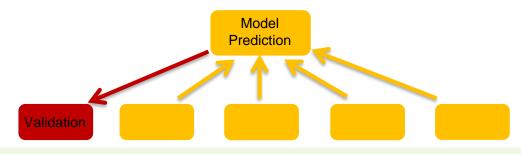
Single and Multiple Trait Prediction

- 231 Spring bread wheat lines
- Genotyped using the wheat 90K iSelect assay
- 18K polymorphic SNPs used for analysis
- Traits
- Days to heading
- Days to maturity
- Plant height

- Grain yield

- Test weight

- Grain protein
- Falling number
- 1000-kernel weight SI
- SDS sedimentation


Statistical Methods

- 1) Single Trait Models
 - Ridge regression BLUP
 - Genomic BLUP
 - Bayesian Lasso
 - Bayesian ridge regression
 - BayesA
 - BayesB
 - BayesC
 - RKHS
 - RKHS-KA

- 2) Multiple Trait Models
 - MT-BayesA
 - MT-BayesA matrix
 - MT-BayesA scale
- Models were fitted in R
 BGLR package (Perez and de los Campos, 2014)
 rrBLUP package (Endelman, 2011)
 C programs (Jiang et al., 2015)

Fivefold Cross-Validation

- Divide the population into five groups
- Use four to train the model and one to validate
- Accuracy in each fold is the correlation between
 GEBVs and phenotypes of individuals in the validation
- Repeated until each group is used as validation
- Averages of the fivefold reported

Modelling G × E Interaction

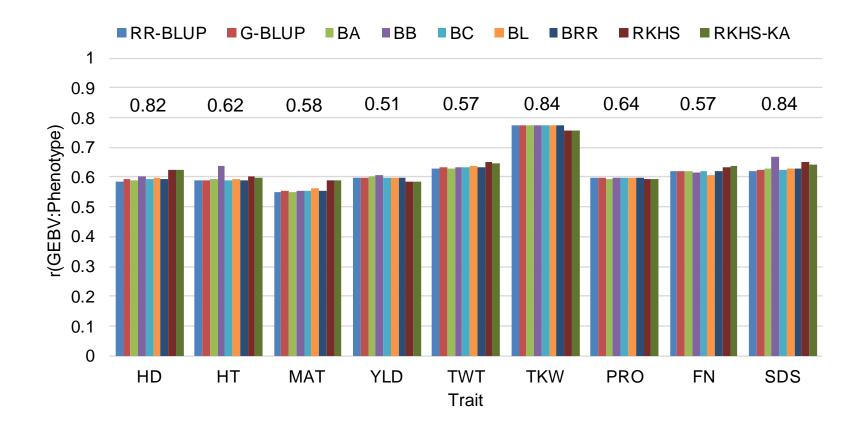
- 81 spring bread wheat lines
- Three approaches using G-BLUP (Lopez-Cruz et al., 2015)
 - 1) $M \times E$ interaction model ($M \times E$)

2) Across-environment (AcrossEnv)

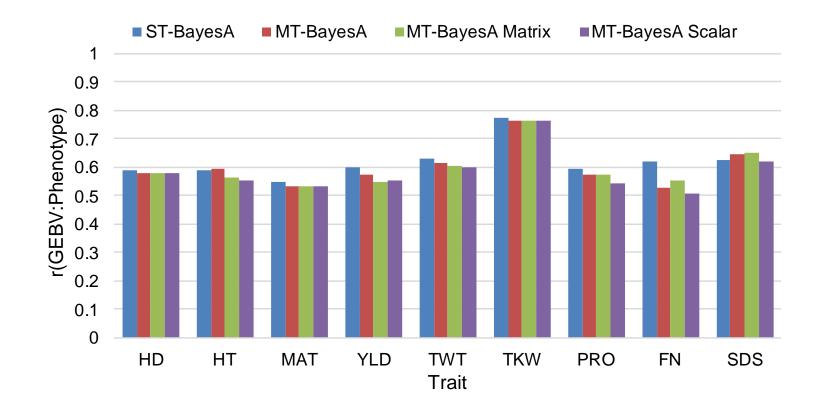
3) Single-environment (SingleEnv)

- 80% TP : 20% validation
- Prediction was made for grain yield
- Two cross-validation schemes

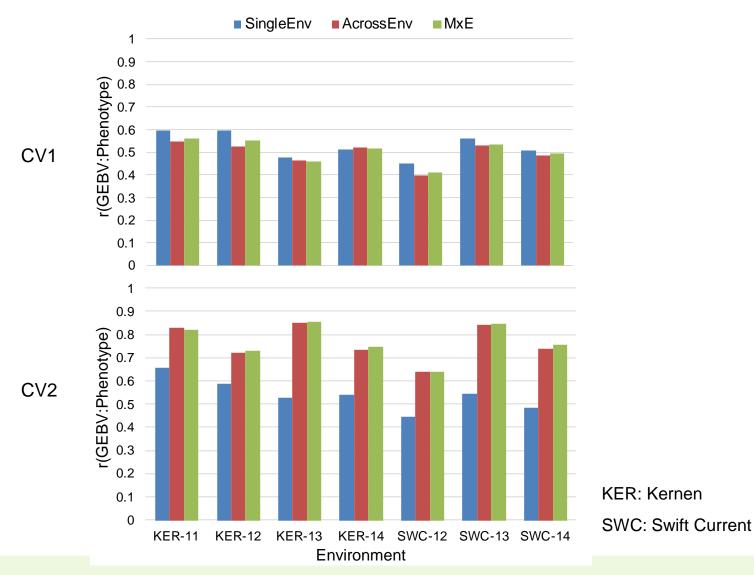
Cross-Validation Schemes


CV1: Predic	ction for newly o	leveloped lines			
	E1	E2	E3	E4	E5
Line 1	Y11	Y12	Y13	Y14	Y15
Line 2	Y21	Y22	Y23	Y24	Y25
Line 3	NA	NA	NA	NA	NA
Line 4	Y41	Y42	Y43	Y44	Y45
Line 5	Y51	Y52	Y53	Y54	Y55

CV2: Prediction for incomplete field trials							
	E1	E2	E3	E4	E5		
Line 1	Y11	NA	Y13	Y14	Y15		
Line 2	Y21	Y22	NA	Y24	Y25		
Line 3	Y31	Y32	Y33	Y34	NA		
Line 4	Y41	Y42	Y43	NA	Y45		
Line 5	NA	Y52	Y53	Y54	Y55		


Jarquín et al. 2014

Results


Single Trait Prediction Accuracy

Multiple Trait Prediction Accuracy

Modelling GxE Interaction (Yield)

Conclusion

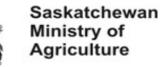
- No difference among single trait prediction models.
- Multiple trait prediction accuracy was similar or lower than single trait prediction accuracy.
- No relationship between trait heritability and accuracy.
- No benefit of modelling G × E interaction.
- Accuracies obtained in this study are encouraging.
- In wheat, GS can be implemented using G-BLUP.

Acknowledgements

- Dr. Curtis Pozniak
- Advisory Committee

Dr. Aaron Beattie

Dr. Fiona Buchanan


Dr. Pierre Hucl

Dr. Yuguang Bai

- Durum field crew
- Durum molecular lab crew
- Wheat quality lab crew
- Durum professional staff

SenomePrairie

Thank You!