37 research outputs found

    Intestinal apoptotic changes linked to metabolic status in fasted and refed rats

    Full text link
    Intestinal apoptosis and expression of apoptosis inducers - the cytokines TNFalpha, TGFbeta1 - and the intestinal transcription factor Cdx2, were studied according to two different metabolic and hormonal phases which characterize long-term fasting: the long period of protein sparing during which energy expenditure is derived from lipid oxidation (phase II), and the later phase characterized by a rise in body protein utilization and plasma corticosterone (phase III). Apoptosis was further studied in 2, 6, and 24 h refed rats. Morphological apoptotic events were observed by environmental and conventional scanning electron microscopy and a TUNEL test was used to characterize the final stages of apoptotic death. The gene and protein expressions of TNFalpha, TGFbeta1, and Cdx2 were measured. Apoptotic events and TNFalpha, TGFbeta1, and Cdx2 gene and protein expressions did not vary significantly during phase II as compared to the normally fed animals. However, a phase III fasting induced a delay in intestinal epithelial apoptosis, along with a 92, 58, and 25% decrease in TNFalpha, TGFbeta1, and Cdx2 mRNAs, respectively. The amounts of TNFalpha, TGFbeta1, and Cdx2 proteins decreased by 70, 36, and 25%, respectively. Apoptosis was restored rapidly after a 2 h refeeding following the phase III, accompanied by a significant increase in TNFalpha, TGFbeta1, and Cdx2 mRNA and the protein levels, compared to the phase III fasting values. The concomitant decreases in cytokines and Cdx2 and in apoptotic cells during phase III suggest the preservation of enterocytes during this critical fasting period in order to optimize nutrient absorption as soon as food is available and thus, to rapidly restore body mass

    Role of HDAC3 on p53 Expression and Apoptosis in T Cells of Patients with Multiple Sclerosis

    Get PDF
    Background: Histone deacetylase 3 (HDAC3) belongs to a family of proteins which plays an important role in protein acetylation, chromatin remodeling and transcription of genes, including those that are involved in cell proliferation and cell death. While increased expression of HDAC3 is seen in neoplastic cells, the role of HDAC3 in T cells and their role in autoimmune disease is not known. Methodology/Principal Findings: Applying Affymetrix GeneChip Human Gene 1.0 ST Array and the mixed effects model for gene set analysis, we compared gene expression profiles between multiple sclerosis (MS) patients and healthy controls (HC). Within the Apoptosis_GO gene set, the constitutive expression level of HDAC3 in peripheral blood mononuclear cell (PBMC) was significantly increased in MS patients when compared to controls. Following addition of trichostatin A (TSA), an inhibitor of HDAC3, we examined the expression of p53 by flow cytometry and p53 targeted genes by real time RT-PCR in MS and HC. Culture of PBMC with TSA resulted in increased expression of p53 in HC but not in MS patients. TSA treated T cells from MS patients also showed reduced sensitivity to apoptosis when compared to HC, which was independent of activation of p53 targeted pro-apoptotic genes. Conclusion/Significance: MS patients, when compared to controls, show an increased expression of HDAC3 and relative resistance to TSA induced apoptosis in T cells. Increased expression of HDAC3 in PBMC of MS patients may render putativ

    Geophagy Practices and the Content of Chemical Elements in the Soil Eaten by Pregnant Women in Artisanal and Small Scale Gold Mining Communities in Tanzania.

    Get PDF
    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten

    Des rats à Strasbourg : les citadins face à la lutte intégrée

    No full text
    Comme de nombreuses villes d’Europe, Strasbourg fait face à une apparente prolifération du rongeur Rattus norvegicus. Pour faire face au phénomène, les administrateurs de la ville mettent en place une stratégie préventive, dite lutte intégrée, afin de limiter les actions létales* classiques de lutte contre le rat. L’étude que nous avons menée sur cette question est à la fois ethnographique et biologique.Le premier volet a consisté à explorer les représentations relatives des rats à Strasbourg au moyen d’entretiens menés dans la ville et sa périphérie et le second volet sonde l’état sanitaire de ces animaux

    Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis: Apoptosis

    No full text
    PubMed ID: 18419600Many studies aim at improving therapeutic efficacy by combining strategies with oxidative stress-inducing drugs and histone deacetylase (HDAC) inhibitors in colorectal cancer. As p53 and p21WAF1 are essential in oxidative stress-induced DNA damage, we investigated epigenetic regulation of p21 WAF1 promoter. Firstly, HCT116 p53+/+ and p53-/- colorectal cancer cells were treated with H 2O2 for 6 hrs and 24 hrs (early/late response). Chromatin immunoprecipitation revealed transcriptional transactivation of p21 WAF1 in HCT116 p53+/+ cells as shown by increased binding of p53 and acetylated H4 around two p21WAF1 promoter sites, the responsible element (RE) and the Sp1 site, while both proteins bound preferentially on the RE. Interestingly, H3 was not involved, suggesting H4-specific transactivation of the p21WAF1 promoter. H2O2 addition resulted in G2/M arrest of both HCT116 cell lines without significant cell death. To investigate whether a HDAC inhibitor strengthens G2/M arrest, we pretreated cells with Trichostatin A (TSA). In HCT116 p53+/+ cells, we found (i) remarkably increased acetylated H4 around both p21WAF1 promoter regions, especially at the Sp1 site; (ii) increased acetylation of p53 at lysines 320 and 382;(iii) displacement of HDAC1 from the Sp1 site, thus inhibiting its repression effect and increasing p53 binding.p53 seems to trigger H4-acetylation around the p21WAF1 promoter because there was nearly no H4 acetylation in HCT116 p53-/- cells. For the first time we show that there is a time-dependent TSA mode of action with increased p53-dependent histone H4 acetylation at the p21WAF1 promoter in early response, and decreased acetylation in late response. Reduced p53-triggered transactivation of p21WAF1 in late response allows cells to re-enter cell cycle, and TSA causes p53 to simultaneously induce apoptosis. © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

    Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis

    No full text
    International audienceMany studies aim at improving therapeutic efficacy by combining strategies with oxidative stress-inducing drugs and histone deacetylase (HDAC) inhibitors in colorectal cancer. As p53 and p21(WAF1) are essential in oxidative stress-induced DNA damage, we investigated epigenetic regulation of p21(WAF1) promoter. Firstly, HCT116 p53(+)/(+) and p53(-)/(-) colorectal cancer cells were treated with H(2)O(2) for 6 hrs and 24 hrs (early/late response). Chromatin immunoprecipitation revealed transcriptional transactivation of p21(WAF1) in HCT116 p53(+)/(+) cells as shown by increased binding of p53 and acetylated H4 around two p21(WAF1) promoter sites, the responsible element (RE) and the Sp1 site, while both proteins bound preferentially on the RE. Interestingly, H3 was not involved, suggesting H4-specific transactivation of the p21(WAF1) promoter. H(2)O(2) addition resulted in G(2)/M arrest of both HCT116 cell lines without significant cell death. To investigate whether a HDAC inhibitor strengthens G(2)/M arrest, we pretreated cells with Trichostatin A (TSA). In HCT116 p53(+)/(+) cells, we found (i) remarkably increased acetylated H4 around both p21(WAF1) promoter regions, especially at the Sp1 site; (ii) increased acetylation of p53 at lysines 320 and 382;(iii) displacement of HDAC1 from the Sp1 site, thus inhibiting its repression effect and increasing p53 binding.p53 seems to trigger H4-acetylation around the p21(WAF1) promoter because there was nearly no H4 acetylation in HCT116 p53(-)/(-) cells. For the first time we show that there is a time-dependent TSA mode of action with increased p53-dependent histone H4 acetylation at the p21(WAF1) promoter in early response, and decreased acetylation in late response. Reduced p53-triggered transactivation of p21(WAF1) in late response allows cells to re-enter cell cycle, and TSA causes p53 to simultaneously induce apoptosis
    corecore