19,687 research outputs found

    BMN operators with vector impurities, Z_2 symmetry and pp-waves

    Full text link
    We calculate the coefficients of three-point functions of BMN operators with two vector impurities. We find that these coefficients can be obtained from those of the three-point functions of scalar BMN operators by interchanging the coefficient for the symmetric-traceless representation with the coefficient for the singlet. We conclude that the Z_2 symmetry of the pp-wave string theory is not manifest at the level of field theory three-point correlators.Comment: 25 pages, 7 figures. v1: A reference and a footnote added; v2: New contributions found, Z_2 symmetry lost in 3-point function

    Resolution-dependent quark masses from meson correlators

    Get PDF
    We explore the impact of a resolution-dependent constituent quark mass, as recently applied to diffractive meson production, in QCD correlation functions of several spin-0 and spin-1 meson channels. We compare the resulting correlators with experimental and lattice data, analyze the virtues and limitations of the approach, and discuss the channel dependence of the obtained effective quark masses.Comment: 15 pages, 5 figures, to be published in Phys. Rev. C, reference adde

    A rare early-type star revealed in the Wing of the Small Magellanic Cloud

    Full text link
    Sk 183 is the visually-brightest star in the N90 nebula, a young star-forming region in the Wing of the Small Magellanic Cloud (SMC). We present new optical spectroscopy from the Very Large Telescope which reveals Sk 183 to be one of the most massive O-type stars in the SMC. Classified as an O3-type dwarf on the basis of its nitrogen spectrum, the star also displays broadened He I absorption which suggests a later type. We propose that Sk 183 has a composite spectrum and that it is similar to another star in the SMC, MPG 324. This brings the number of rare O2- and O3-type stars known in the whole of the SMC to a mere four. We estimate physical parameters for Sk 183 from analysis of its spectrum. For a single-star model, we estimate an effective temperature of 46+/-2 kK, a low mass-loss rate of ~10^-7 Msun yr^-1, and a spectroscopic mass of 46^+9_-8 Msun (for an adopted distance modulus of 18.7 mag to the young population in the SMC Wing). An illustrative binary model requires a slightly hotter temperature (~47.5 kK) for the primary component. In either scenario, Sk 183 is the earliest-type star known in N90 and will therefore be the dominant source of hydrogen-ionising photons. This suggests Sk 183 is the primary influence on the star formation along the inner edge of the nebula.Comment: Accepted by ApJ, 10 pages, 7 figures, v2 after proof

    Noncommutative Quantum Mechanics from Noncommutative Quantum Field Theory

    Get PDF
    We derive noncommutative multi-particle quantum mechanics from noncommutative quantum field theory in the nonrelativistic limit. Paricles of opposite charges are found to have opposite noncommutativity. As a result, there is no noncommutative correction to the hydrogen atom spectrum at the tree level. We also comment on the obstacles to take noncommutative phenomenology seriously, and propose a way to construct noncommutative SU(5) grand unified theory.Comment: 14 pages, Latex, minor modification, references adde

    Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3

    Full text link
    We studied the defects of Bi2Se3 generated from Bridgman growth of stoichiometric and nonstoichiometric self-fluxes. Growth habit, lattice size, and transport properties are strongly affected by the types of defect generated. Major defect types of Bi_Se antisite and partial Bi_2-layer intercalation are identified through combined studies of direct atomic-scale imaging with scanning transmission electron microscopy (STEM) in conjunction with energy-dispersive X-ray spectroscopy (STEM-EDX), X-ray diffraction, and Hall effect measurements. We propose a consistent explanation to the origin of defect type, growth morphology, and transport property.Comment: 5 pages, 5 figure

    Classical and quantum regimes of two-dimensional turbulence in trapped Bose-Einstein condensates

    Full text link
    We investigate two-dimensional turbulence in finite-temperature trapped Bose-Einstein condensates within damped Gross-Pitaevskii theory. Turbulence is produced via circular motion of a Gaussian potential barrier stirring the condensate. We systematically explore a range of stirring parameters and identify three regimes, characterized by the injection of distinct quantum vortex structures into the condensate: (A) periodic vortex dipole injection, (B) irregular injection of a mixture of vortex dipoles and co-rotating vortex clusters, and (C) continuous injection of oblique solitons that decay into vortex dipoles. Spectral analysis of the kinetic energy associated with vortices reveals that regime (B) can intermittently exhibit a Kolmogorov k5/3k^{-5/3} power law over almost a decade of length or wavenumber (kk) scales. The kinetic energy spectrum of regime (C) exhibits a clear k3/2k^{-3/2} power law associated with an inertial range for weak-wave turbulence, and a k7/2k^{-7/2} power law for high wavenumbers. We thus identify distinct regimes of forcing for generating either two-dimensional quantum turbulence or classical weak-wave turbulence that may be realizable experimentally.Comment: 11 pages, 10 figures. Minor updates to text and figures 1, 2 and

    Unusual Field-Dependence of the Intragrain Superconductive Transition in RuSr2EuCu2O8

    Full text link
    A narrow intragrain phase-lock transition was observed in RuSr2EuCu2O8 under a magnetic field H up to a few Tesla. The corresponding transition temperature, T2, decreases rapidly (about 100 K/T at low fields) with H indicating that the grains of RuSr2EuCu2O8 behave like a Josephson-junction-array instead of a homogeneous bulk superconductor. Our data suggest that the bulk superconducting transition may occur on a length scale well below the grain size of 2 to 6 micrometer

    Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace

    Full text link
    We present a detailed study of the dynamic response of a ring of NN equally spaced Josephson junctions to a time-periodic external flux, including screening current effects. The dynamics are described by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, and we include Faraday's law for the flux. We find that the time-averaged IVI-V characteristics show novel {\em subharmonic giant Shapiro voltage resonances}, which strongly depend on having phase slips or not, on NN, on the inductance and on the external drive frequency. We include an estimate of the possible experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques

    A Framework to Synergize Partial Order Reduction with State Interpolation

    Full text link
    We address the problem of reasoning about interleavings in safety verification of concurrent programs. In the literature, there are two prominent techniques for pruning the search space. First, there are well-investigated trace-based methods, collectively known as "Partial Order Reduction (POR)", which operate by weakening the concept of a trace by abstracting the total order of its transitions into a partial order. Second, there is state-based interpolation where a collection of formulas can be generalized by taking into account the property to be verified. Our main contribution is a framework that synergistically combines POR with state interpolation so that the sum is more than its parts

    The 3-string vertex and the AdS/CFT duality in the PP-wave limit

    Full text link
    We pursue the study of string interactions in the PP-wave background and show that the proposal of hep-th/0211188 can be extended to a full supersymmetric vertex. Then we compute some string amplitudes in both the bosonic and fermionic sector, finding agreement with the field theory results at leading order in lambda'.Comment: Latex, 25 pages. Comments added and typos correcte
    corecore