523 research outputs found

    A time-domain fourth-order-convergent numerical algorithm to integrate black hole perturbations in the extreme-mass-ratio limit

    Full text link
    We obtain a fourth order accurate numerical algorithm to integrate the Zerilli and Regge-Wheeler wave equations, describing perturbations of nonrotating black holes, with source terms due to an orbiting particle. Those source terms contain the Dirac's delta and its first derivative. We also re-derive the source of the Zerilli and Regge-Wheeler equations for more convenient definitions of the waveforms, that allow direct metric reconstruction (in the Regge-Wheeler gauge).Comment: 30 pages, 12 figure

    Exact Gravitational Shock Wave Solution of Higher Order Theories

    Get PDF
    We find an {\it exact} pp--gravitational wave solution of the fourth order gravity field equations. Outside the (delta--like) source this {\it not} a vacuum solution of General Relativity. It represents the contribution of the massive, m=(−ÎČ)−1/2m=(-\beta)^{-1/2}, spin--two field associated to the Ricci squared term in the gravitational Lagrangian. The fourth order terms tend to make milder the singularity of the curvature at the point where the particle is located. We generalize this analysis to DD--dimensions, extended sources, and higher than fourth order theories. We also briefly discuss the scattering of fields by this kind of plane gravitational waves.Comment: 12 pages, REVTEX, Fully revised version. Amplitude of the wave computed. Discussion section added. Figure added. To appear in Phys. Rev.

    Regular second order perturbations of binary black holes: The extreme mass ratio regime

    Get PDF
    In order to derive the precise gravitational waveforms for extreme mass ratio inspirals (EMRI), we develop a formulation for the second order metric perturbations produced by a point particle moving in the Schwarzschild spacetime. The second order waveforms satisfy a wave equation with an effective source build up from products of the first order perturbations and its derivatives. We have explicitly regularized this source at the horizon and at spatial infinity. We show that the effective source does not contain squares of the Dirac's delta and that perturbations are regular at the particle location. We introduce an asymptotically flat gauge for the radiation fields and the ℓ=0\ell=0 mode to compute explicitly the (leading) second order ℓ=2\ell=2 waveforms in the headon collision case. This case represents the first completion of the radiation reaction program self-consistently.Comment: 28 pages, no figur

    String Propagation through a Big Crunch/Big Bang Transition

    Full text link
    We consider the propagation of classical and quantum strings on cosmological space-times which interpolate from a collapsing phase to an expanding phase. We begin by considering the classical propagation of strings on space-times with isotropic and anisotropic cosmological singularities. We find that cosmological singularities fall into two classes, in the first class the string evolution is well behaved all the way up to the singularity, whilst in the second class it becomes ill-defined. Then assuming the singularities are regulated by string scale corrections, we consider the implications of the propagation through a `bounce'. It is known that as we evolve through a bounce, quantum strings will become excited giving rise to `particle transmutation'. We reconsider this effect, giving qualitative arguments for the amount of excitation for each class. We find that strings whose physical wavelength at the bounce is less that αâ€Č\sqrt{\alpha'} inevitably emerge in highly excited states, and that in this regime there is an interesting correspondence between strings on anisotropic cosmological space-times and plane waves. We argue that long wavelength modes, such as those describing cosmological perturbations, will also emerge in mildly excited string scale mass states. Finally we discuss the relevance of this to the propagation of cosmological perturbations in models such as the ekpyrotic/cyclic universe.Comment: 15 page

    Regularization of the Teukolsky Equation for Rotating Black Holes

    Get PDF
    We show that the radial Teukolsky equation (in the frequency domain) with sources that extend to infinity has well-behaved solutions. To prove that, we follow Poisson approach to regularize the non-rotating hole, and extend it to the rotating case. To do so we use the Chandrasekhar transformation among the Teukolsky and Regge-Wheeler-like equations, and express the integrals over the source in terms of solutions to the homogeneous Regge-Wheeler-like equation, to finally regularize the resulting integral. We then discuss the applicability of these results.Comment: 14 pages, 1 Table, REVTE

    Perspective on gravitational self-force analyses

    Full text link
    A point particle of mass ÎŒ\mu moving on a geodesic creates a perturbation habh_{ab}, of the spacetime metric gabg_{ab}, that diverges at the particle. Simple expressions are given for the singular ÎŒ/r\mu/r part of habh_{ab} and its distortion caused by the spacetime. This singular part h^\SS_{ab} is described in different coordinate systems and in different gauges. Subtracting h^\SS_{ab} from habh_{ab} leaves a regular remainder habRh^\R_{ab}. The self-force on the particle from its own gravitational field adjusts the world line at \Or(\mu) to be a geodesic of gab+habRg_{ab}+h^\R_{ab}; this adjustment includes all of the effects of radiation reaction. For the case that the particle is a small non-rotating black hole, we give a uniformly valid approximation to a solution of the Einstein equations, with a remainder of \Or(\mu^2) as Ό→0\mu\to0. An example presents the actual steps involved in a self-force calculation. Gauge freedom introduces ambiguity in perturbation analysis. However, physically interesting problems avoid this ambiguity.Comment: 40 pages, to appear in a special issue of CQG on radiation reaction, contains additional references, improved notation for tensor harmonic

    Radiation content of Conformally flat initial data

    Full text link
    We study the radiation of energy and linear momentum emitted to infinity by the headon collision of binary black holes, starting from rest at a finite initial separation, in the extreme mass ratio limit. For these configurations we identify the radiation produced by the initially conformally flat choice of the three geometry. This identification suggests that the radiated energy and momentum of headon collisions will not be dominated by the details of the initial data for evolution of holes from initial proper separations L0≄7ML_0\geq7M. For non-headon orbits, where the amount of radiation is orders of magnitude larger, the conformally flat initial data may provide a relative even better approximation.Comment: 4 pages, 4 figure

    String dynamics near a Kaluza-Klein black hole

    Get PDF
    The dynamics of a string near a Kaluza-Klein black hole are studied. Solutions to the classical string equations of motion are obtained using the world sheet velocity of light as an expansion parameter. The electrically and magnetically charged cases are considered separately. Solutions for string coordinates are obtained in terms of the world-sheet coordinate τ\tau. It is shown that the Kaluza-Klein radius increases/decreases with τ\tau for electrically/magnetically charged black hole.Comment: Latex2e file with six postscript figures. Minor changes, more accurate numerical results and updated reference

    Accurate black hole evolutions by fourth-order numerical relativity

    Full text link
    We present techniques for successfully performing numerical relativity simulations of binary black holes with fourth-order accuracy. Our simulations are based on a new coding framework which currently supports higher order finite differencing for the BSSN formulation of Einstein's equations, but which is designed to be readily applicable to a broad class of formulations. We apply our techniques to a standard set of numerical relativity test problems, demonstrating the fourth-order accuracy of the solutions. Finally we apply our approach to binary black hole head-on collisions, calculating the waveforms of gravitational radiation generated and demonstrating significant improvements in waveform accuracy over second-order methods with typically achievable numerical resolution.Comment: 17 pages, 25 figure
    • 

    corecore