144 research outputs found

    LC determination of propylene glycol in human plasma after pre-column derivatization with benzoyl chloride

    Get PDF
    A simple high-performance liquid chromatographic method, using photodiode array detection was developed for the determination of propylene glycol in human plasma and in the fluid retreived after continuous veno-venous hemofiltration. The method entailed alkaline derivatization with benzoyl chloride and ethylene glycol as internal standard. The separation of the compounds, after extraction with pentane, was carried out on a Pursuit C8 column with UV-detection at 230 nm. Validation samples were analyzed with an accuracy between 95 and 105%, and intra- and inter-day coefficients of variation of less than 8%. The calibration curve was linear over a concentration range of 5-100 mg

    Lung contusion and cavitation with exudative plural effusion following extracorporeal shock wave lithotripsy in an adult: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Among the complications of extracorporeal shock wave lithotripsy are perinephric bleeding and hypertension.</p> <p>Case presentation</p> <p>We describe the case of a 31-year-old Asian man with an unusual case of hemoptysis and lung contusion and cavitation with exudative plural effusion due to pulmonary trauma following false positioning of extracorporeal shock wave lithotripsy. Differential diagnoses included pneumonia and pulmonary emboli, but these diagnoses were ruled out by the uniformly negative results of a lung perfusion scan, Doppler ultrasound, and culture of bronchoalveolar lavage and plural effusion, and because our patient showed spontaneous improvement.</p> <p>Conclusions</p> <p>False positioning of extracorporeal shock wave lithotripsy can cause lung trauma presenting as pulmonary contusion and cavitation with plural effusion.</p

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Get PDF
    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add additional fragmentation identifiers, collectively enhancing the abilities for detection and screening of unknown aldehydes. Derivatization can be achieved under mild conditions (pH 5.7, 10 °C). By changing the secondary reagent (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide instead of sodium cyanoborohydride), 4-APEBA is also applicable to the selective derivatization of carboxylic acids. Synthesis of the new label, exploration of the derivatization conditions, characterization of the fragmentation of the aldehyde and carboxylic acid derivatives in MS/MS, and preliminary applications of the labeling strategy for the analysis of aldehydes in urine and plasma are described

    Thermostating in capillary electrophoresis.

    No full text
    The use of high voltages across a electrophoresis capillary will increase the temperature of the buffer due to Joule heating. As a result temperature control in CE is rather important since variations in the buffer temperature will result in changes in the pi-I of the buffer, peak shape, migration time, reproducibility, efficiency, 3-D structure of macromolecular analytes, etc. Six different thermostating systems have been evaluated: (i) natural convection, (ii) fan, (iii) home-made and (iv and v) two commercially available high-speed air and a (vi) liquid thermostated device. In all cases the temperature of the buffer in the capillary is calculated according to the temperature-conductivity relationship. For this purpose two parameters are introduced describing temperature control: the temperature onset (δT) and the temperature rise factor (a). From these results, it can be concluded that high speed air thermostating can be as efficient as liquid thermostating

    Diode laser-based detection in liquid chromatography and capillary electrophoresis.

    No full text
    Detection techniques involving diode lasers are increasingly of interest in separation science, Diode lasers are small and inexpensive and have a very stable output. However, diode lasers emitting at wavelengths shorter than 635 nm are not commercially available. This seriously limits the applicability of direct detection, since few analytes absorb at such long wavelengths. Because devices that emit at much shorter wavelengths are not expected to become available in the near future, indirect detection schemes involving diode lasers are being developed. These are often based on derivatization with red-absorbing labels and subsequent separation of the label and the various derivatized analytes using either liquid chromatography (LC) or capillary electrophoresis (CE). The application of diode-laser-based detection in CE is of particular interest because the usual detection methods, e.g., absorption detection, do not have the sensitivity required for many applications
    • …
    corecore