1,806 research outputs found

    Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    Get PDF
    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794871

    HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies

    Get PDF
    We present colours of sources detected with the Herschel/SPIRE instrument in deep extragalactic surveys of the Lockman Hole, Spitzer-FLS, and GOODS-N fields in three photometric bands at 250, 350 and 500 ÎŒm. We compare these with expectations from the literature and discuss associated uncertainties and biases in the SPIRE data. We identify a 500 ÎŒm flux limited selection of sources from the HerMES point source catalogue that appears free from neighbouring/blended sources in all three SPIRE bands. We compare the colours with redshift tracks of various contemporary models. Based on these spectral templates we show that regions corresponding to specific population types and redshifts can be identified better in colour-flux space. The redshift tracks as well as the colour-flux plots imply a majority of detected objects with redshifts at 1 < z < 3.5, somewhat depending on the group of model SEDs used. We also find that a population of sources with S_(250)/S_(350) < 0.8 at fluxes above 50 mJy as observed by SPIRE are not well represented by contemporary models and could consist of a mix of cold and lensed galaxies

    HerMES: deep number counts at 250 ÎŒm, 350 ÎŒm and 500 ÎŒm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

    Get PDF
    Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 ÎŒm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 ÎŒm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 ÎŒm and 1000 ÎŒm: 26_(-3)^(+7) nW m^(-2) sr^(-1)

    What is the contribution of physician associates in hospital care in England? A mixed methods, multiple case study.

    Get PDF
    OBJECTIVES: To investigate the deployment of physician associates (PAs); the factors supporting and inhibiting their employment and their contribution and impact on patients' experience and outcomes and the organisation of services. DESIGN: Mixed methods within a case study design, using interviews, observations, work diaries and documentary analysis. SETTING: Six acute care hospitals in three regions of England in 2016-2017. PARTICIPANTS: 43 PAs, 77 other health professionals, 28 managers, 28 patients and relatives. RESULTS: A key influencing factor supporting the employment of PAs in all settings was a shortage of doctors. PAs were found to be acceptable, appropriate and safe members of the medical/surgical teams by the majority of doctors, managers and nurses. They were mainly deployed to undertake inpatient ward work in the medical/surgical team during core weekday hours. They were reported to positively contribute to: continuity within their medical/surgical team, patient experience and flow, inducting new junior doctors, supporting the medical/surgical teams' workload, which released doctors for more complex patients and their training. The lack of regulation and attendant lack of authority to prescribe was seen as a problem in many but not all specialties. The contribution of PAs to productivity and patient outcomes was not quantifiable separately from other members of the team and wider service organisation. Patients and relatives described PAs positively but most did not understand who and what a PA was, often mistaking them for doctors. CONCLUSIONS: This study offers new insights concerning the deployment and contribution of PAs in medical and surgical specialties in English hospitals. PAs provided a flexible addition to the secondary care workforce without drawing from existing professions. Their utility in the hospital setting is unlikely to be completely realised without the appropriate level of regulation and authority to prescribe medicines and order ionising radiation within their scope of practice

    Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10^(11) solar masses

    Get PDF
    The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 ”m. From this excess, we find that submillimetre galaxies are located in darkmatter haloes with a minimum mass, M_(min), such that log_(10)[M_(min)/M_⊙] = 11.5^(+0.7)_(-0.2) at 350 ”m, where M_⊙ is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation

    HerMES: deep galaxy number counts from a P(D) fluctuation analysis of SPIRE Science Demonstration Phase observations

    Get PDF
    Dusty, star-forming galaxies contribute to a bright, currently unresolved cosmic far-infrared background. Deep Herschel-Spectral and Photometric Imaging Receiver (SPIRE) images designed to detect and characterize the galaxies that comprise this background are highly confused, such that the bulk lies below the classical confusion limit. We analyse three fields from the Herschel Multi-tiered Extragalactic Survey (HerMES) programme in all three SPIRE bands (250, 350 and 500 ÎŒm); parametrized galaxy number count models are derived to a depth of ~2 mJy beam^(−1), approximately four times the depth of previous analyses at these wavelengths, using a probability of deflection [P(D)] approach for comparison to theoretical number count models. Our fits account for 64, 60 and 43 per cent of the far-infrared background in the three bands. The number counts are consistent with those based on individually detected SPIRE sources, but generally inconsistent with most galaxy number count models, which generically overpredict the number of bright galaxies and are not as steep as the P(D)-derived number counts. Clear evidence is found for a break in the slope of the differential number counts at low flux densities. Systematic effects in the P(D) analysis are explored. We find that the effects of clustering have a small impact on the data, and the largest identified systematic error arises from uncertainties in the SPIRE beam
    • 

    corecore