93,253 research outputs found
Estimating Form Factors of and their Applications to Semi-leptonic and Non-leptonic Decays
and weak transition
form factors are estimated for the whole physical region with a method based on
an instantaneous approximated Mandelstam formulation of transition matrix
elements and the instantaneous Bethe-Salpeter equation. We apply the estimated
form factors to branching ratios, CP asymmetries and polarization fractions of
non-leptonic decays within the factorization approximation. And we study the
non-factorizable effects and annihilation contributions with the perturbative
QCD approach. The branching ratios of semi-leptonic decays are also evaluated. We show that the calculated
decay rates agree well with the available experimental data. The longitudinal
polarization fraction of decays are when
denotes a light meson, and are when denotes a
() meson.Comment: Final version published in J Phys. G 39 (2012) 045002 (Title also
changed
The NLO QCD Corrections to Meson Production in Decays
The decay width of to meson is evaluated at the next-to-leading
order(NLO) accuracy in strong interaction. Numerical calculation shows that the
NLO correction to this process is remarkable. The quantum
chromodynamics(QCD)renormalization scale dependence of the results is obviously
depressed, and hence the uncertainties lying in the leading order calculation
are reduced.Comment: 14 pages, 7 figures; references added; expressions and typos ammende
Energy dependence of Normal Branch Oscillation in Scorpius X-1
We report the energy dependence of normal branch oscillations (NBOs) in
Scorpius X-1, a low-mass X-ray binary Z-source. Three characteristic quantities
(centroid frequency, quality factor, and fractional root-mean-squared (rms)
amplitude) of a quasi-periodic oscillation signal as functions of photon energy
are investigated. We found that, although it is not yet statistically well
established, there is a signature indicating that the NBO centroid frequency
decreases with increasing photon energy when it is below 6-8 keV, which turns
out to be positively correlated with the photon energy at the higher energy
side. In addition, the rms amplitude increases significantly with the photon
energy below 13 keV and then decreases in the energy band of 13-20 keV. There
is no clear dependence on photon energy for the quality factor. Based on these
results, we suggest that the NBO originates mainly in the transition layer.Comment: 6 pages, 4 figure
Fitting Precision Electroweak Data with Exotic Heavy Quarks
The 1999 precision electroweak data from LEP and SLC persist in showing some
slight discrepancies from the assumed standard model, mostly regarding and
quarks. We show how their mixing with exotic heavy quarks could result in a
more consistent fit of all the data, including two unconventional
interpretations of the top quark.Comment: 7 pages, no figure, 2 typos corrected, 1 reference update
Boson Decays to Meson and Its Uncertainties
The programming new collider with high luminosity shall provide
another useful platform to study the properties of the doubly heavy meson
in addition to the hadronic colliders as LHC and TEVATRON. Under the `New Trace
Amplitude Approach', we calculate the production of the spin-singlet and
the spin-triplet mesons through the boson decays, where
uncertainties for the production are also discussed. Our results show
KeV and
KeV, where the errors are caused by
varying and within their reasonable regions.Comment: 11 pages, 5 figures, 2 tables. To be published in Eur.Phys.J.
Production of the -Wave Excited -States through the Boson Decays
In Ref.[7],we have dealt with the production of the two color-singlet
-wave -quarkonium states and
through the boson decays. As an
important sequential work, we make a further discussion on the production of
the more complicated -wave excited -quarkonium states, i.e.
and (with
). More over, we also calculate the channel with the two color-octet
quarkonium states and , whose contributions to the decay width maybe at the same order of
magnitude as that of the color-singlet -wave states according to the naive
nonrelativistic quantum chromodynamics scaling rules. The -wave states shall
provide sizable contributions to the production, whose decay width is
about 20% of the total decay width . After summing up all
the mentioned -quarkonium states' contributions, we obtain
KeV, where the errors are caused
by the main uncertainty sources.Comment: 8 pages, 5 figures and 2 tables. basic formulae in the appendix are
cut off to match the published version, which can be found in v1. to be
published in Eur.Phys.J.
Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure
A method for measuring the pair interaction potential between colloidal
particles by extrapolation measurement of collective structure to infinite
dilution is presented and explored using simulation and experiment. The method
is particularly well suited to systems in which the colloid is fluorescent and
refractive index matched with the solvent. The method involves characterizing
the potential of mean force between colloidal particles in suspension by
measurement of the radial distribution function using 3D direct visualization.
The potentials of mean force are extrapolated to infinite dilution to yield an
estimate of the pair interaction potential, . We use Monte Carlo (MC)
simulation to test and establish our methodology as well as to explore the
effects of polydispersity on the accuracy. We use poly-12-hydroxystearic
acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in
the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy
for three different repulsive systems for which the range has been manipulated
by addition of electrolyte.Comment: 35 pages, 14 figure
- …