4,451 research outputs found

    Optical altimeter receiver systems study and design for a spaceborne laser altimeter

    Get PDF
    Design and specifications for optical altimeter receiver system

    Effects of Foreground Contamination on the Cosmic Microwave Background Anisotropy Measured by MAP

    Full text link
    We study the effects of diffuse Galactic, far-infrared extragalactic source, and radio point source emission on the cosmic microwave background (CMB) anisotropy data anticipated from the MAP experiment. We focus on the correlation function and genus statistics measured from mock MAP foreground-contaminated CMB anisotropy maps generated in a spatially-flat cosmological constant dominated cosmological model. Analyses of the simulated MAP data at 90 GHz (0.3 deg FWHM resolution smoothed) show that foreground effects on the correlation function are small compared with cosmic variance. However, the Galactic emission, even just from the region with |b| > 20 deg, significantly affects the topology of CMB anisotropy, causing a negative genus shift non-Gaussianity signal. Given the expected level of cosmic variance, this effect can be effectively reduced by subtracting existing Galactic foreground emission models from the observed data. IRAS and DIRBE far-infrared extragalactic sources have little effect on the CMB anisotropy. Radio point sources raise the amplitude of the correlation function considerably on scales below 0.5 deg. Removal of bright radio sources above a 5 \sigma detection limit effectively eliminates this effect. Radio sources also result in a positive genus curve asymmetry (significant at 2 \sigma) on 0.5 deg scales. Accurate radio point source data is essential for an unambiguous detection of CMB anisotropy non-Gaussianity on these scales. Non-Gaussianity of cosmological origin can be detected from the foreground-subtracted CMB anisotropy map at the 2 \sigma level if the measured genus shift parameter |\Delta\nu| >= 0.02 (0.04) or if the measured genus asymmetry parameter |\Delta g| >= 0.03 (0.08) on a 0.3 (1.0) deg FWHM scale.Comment: 26 pages, 7 figures, Accepted for Publication in Astrophysical Journal (Some sentences and figures modified

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres

    Stochastic Biasing and Weakly Non-linear Evolution of Power Spectrum

    Get PDF
    Distribution of galaxies may be a biased tracer of the dark matter distribution and the relation between the galaxies and the total mass may be stochastic, non-linear and time-dependent. Since many observations of galaxy clustering will be done at high redshift, the time evolution of non-linear stochastic biasing would play a crucial role for the data analysis of the future sky surveys. In this paper, we develop the weakly non-linear analysis and attempt to clarify the non-linear feature of the stochastic biasing. We compute the one-loop correction of the power spectrum for the total mass, the galaxies and their cross correlation. Assuming the local functional form for the initial galaxy distribution, we investigate the time evolution of the biasing parameter and the correlation coefficient. On large scales, we first find that the time evolution of the biasing parameter could deviate from the linear prediction in presence of the initial skewness. However, the deviation can be reduced when the initial stochasticity exists. Next, we focus on the quasi-linear scales, where the non-linear growth of the total mass becomes important. It is recognized that the scale-dependence of the biasing dynamically appears and the initial stochasticity could affect the time evolution of the scale-dependence. The result is compared with the recent N-body simulation that the scale-dependence of the halo biasing can appear on relatively large scales and the biasing parameter takes the lower value on smaller scales. Qualitatively, our weakly non-linear results can explain this trend if the halo-mass biasing relation has the large scatter at high redshift.Comment: 29pages, 7 postscript figures, submitted to Ap

    Extended quantum conditional entropy and quantum uncertainty inequalities

    Get PDF
    Quantum states can be subjected to classical measurements, whose incompatibility, or uncertainty, can be quantified by a comparison of certain entropies. There is a long history of such entropy inequalities between position and momentum. Recently these inequalities have been generalized to the tensor product of several Hilbert spaces and we show here how their derivations can be shortened to a few lines and how they can be generalized. All the recently derived uncertainty relations utilize the strong subadditivity (SSA) theorem; our contribution relies on directly utilizing the proof technique of the original derivation of SSA.Comment: 4 page

    Conformal Radiotherapy Facilitates the Delivery of Concurrent Chemotherapy and Radiotherapy: A Case of Primitive Neuroectodermal Tumour of the Chest Wall

    Get PDF
    We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume (PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field that ‘conforms’ to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT

    Room-temperature exciton-polaritons with two-dimensional WS2

    Full text link
    Two-dimensional transition metal dichalcogenides exhibit strong optical transitions with significant potential for optoelectronic devices. In particular they are suited for cavity quantum electrodynamics in which strong coupling leads to polariton formation as a root to realisation of inversionless lasing, polariton condensationand superfluidity. Demonstrations of such strongly correlated phenomena to date have often relied on cryogenic temperatures, high excitation densities and were frequently impaired by strong material disorder. At room-temperature, experiments approaching the strong coupling regime with transition metal dichalcogenides have been reported, but well resolved exciton-polaritons have yet to be achieved. Here we report a study of monolayer WS2_2 coupled to an open Fabry-Perot cavity at room-temperature, in which polariton eigenstates are unambiguously displayed. In-situ tunability of the cavity length results in a maximal Rabi splitting of ℏΩRabi=70\hbar \Omega_{\rm{Rabi}} = 70 meV, exceeding the exciton linewidth. Our data are well described by a transfer matrix model appropriate for the large linewidth regime. This work provides a platform towards observing strongly correlated polariton phenomena in compact photonic devices for ambient temperature applications.Comment: 12 pages, 6 figure

    On the spatial distribution of dark matter halos

    Get PDF
    We study the spatial distribution of dark matter halos in the Universe in terms of their number density contrast, related to the underlying dark matter fluctuation via a non-local and non-linear bias random field. The description of the matter dynamics is simplified by adopting the `truncated' Zel'dovich approximation to obtain both analytical results and simulated maps. The halo number density field in our maps and its probability distribution reproduce with excellent accuracy those of halos in a high-resolution N-body simulation with the same initial conditions. Our non-linear and non-local bias prescription matches the N-body halo distribution better than any Eulerian linear and local bias.Comment: 4 pages, LaTeX (uses emulateapj; included psfig.tex), 3 figures, 1 table. Shortened version, matching the size requirements of ApJ Letters. Accepted for publicatio
    • 

    corecore