34 research outputs found

    Stability of networks of delay-coupled delay oscillators

    Full text link
    Dynamical networks with time delays can pose a considerable challenge for mathematical analysis. Here, we extend the approach of generalized modeling to investigate the stability of large networks of delay-coupled delay oscillators. When the local dynamical stability of the network is plotted as a function of the two delays then a pattern of tongues is revealed. Exploiting a link between structure and dynamics, we identify conditions under which perturbations of the topology have a strong impact on the stability. If these critical regions are avoided the local stability of large random networks can be well approximated analytically

    Voltage and temperature dependence of the grain boundary tunneling magnetoresistance in manganites

    Full text link
    We have performed a systematic analysis of the voltage and temperature dependence of the tunneling magnetoresistance (TMR) of grain boundaries (GB) in the manganites. We find a strong decrease of the TMR with increasing voltage and temperature. The decrease of the TMR with increasing voltage scales with an increase of the inelastic tunneling current due to multi-step inelastic tunneling via localized defect states in the tunneling barrier. This behavior can be described within a three-current model for magnetic tunnel junctions that extends the two-current Julliere model by adding an inelastic, spin-independent tunneling contribution. Our analysis gives strong evidence that the observed drastic decrease of the GB-TMR in manganites is caused by an imperfect tunneling barrier.Comment: to be published in Europhys. Lett., 8 pages, 4 figures (included

    Large two-level magnetoresistance effect in doped manganite grain boundary junctions

    Full text link
    We performed a systematic analysis of the tunneling magnetoresistance (TMR) effect in single grain boundary junctions formed in epitaxial La(2/3)Ca(1/3)MnO(3) films deposited on SrTiO(3) bicrystals. For magnetic fields H applied parallel to the grain boundary barrier, an ideal two-level resistance switching behavior with sharp transitions is observed with a TMR effect of up to 300% at 4.2 K and still above 100% at 77 K. Varying the angle between H and the grain boundary results in differently shaped resistance vs H curves. The observed behavior is explained within a model of magnetic domain pinning at the grain boundary interface.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (Rapid Comm.

    A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries

    Full text link
    We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junction we have been able to reveal the non-linear behavior of the latter. With the use of the relation M_{GB} \propto M_{bulk}\sqrt{MR^*} we have extracted the grain boundary magnetization. Further, we demonstrate that the built-in potential barrier of the grain boundary can be modelled by V_{bi}\propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the magnetoresistance with the potential barrier at the grain boundary region. The results indicate that the band-bending at the grain boundary interface has a magnetic origin.Comment: 9 pages, 5 figure

    A Deep Learning based Pipeline for Efficient Oral Cancer Screening on Whole Slide Images

    Full text link
    Oral cancer incidence is rapidly increasing worldwide. The most important determinant factor in cancer survival is early diagnosis. To facilitate large scale screening, we propose a fully automated pipeline for oral cancer detection on whole slide cytology images. The pipeline consists of fully convolutional regression-based nucleus detection, followed by per-cell focus selection, and CNN based classification. Our novel focus selection step provides fast per-cell focus decisions at human-level accuracy. We demonstrate that the pipeline provides efficient cancer classification of whole slide cytology images, improving over previous results both in terms of accuracy and feasibility. The complete source code is available at https://github.com/MIDA-group/OralScreen.Comment: Accepted to ICIAR 202

    Low frequency 1/f noise in doped manganite grain-boundary junctions

    Full text link
    We have performed a systematic analysis of the low frequency 1/f-noise in single grain boundary junctions in the colossal magnetoresistance material La_{2/3}Ca_{1/3}MnO_{3-delta}. The grain boundary junctions were formed in epitaxial La_{2/3}Ca_{1/3}MnO_{3-delta} films deposited on SrTiO_3 bicrystal substrates and show a large tunneling magnetoresistance of up to 300% at 4.2 K as well as ideal, rectangular shaped resistance versus applied magnetic field curves. Below the Curie temperature T_C the measured 1/f noise is dominated by the grain boundary. The dependence of the noise on bias current, temperature and applied magnetic field gives clear evidence that the large amount of low frequency noise is caused by localized sites with fluctuating magnetic moments in a heavily disordered grain boundary region. At 4.2 K additional temporally unstable Lorentzian components show up in the noise spectra that are most likely caused by fluctuating clusters of interacting magnetic moments. Noise due to fluctuating domains in the junction electrodes is found to play no significant role.Comment: 9 pages, 7 figure

    Extrinsic Magnetotransport Phenomena in Ferromagnetic Oxides

    Full text link
    This review is focused on extrinsic magnetotransport effects in ferromagnetic oxides. It consists of two parts; the second part is devoted to an overview of experimental data and theoretical models for extrinsic magnetotransport phenomena. Here a critical discussion of domain-wall scattering is given. Results on surfacial and interfacial magnetism in oxides are presented. Spin-polarized tunnelling in ferromagnetic junctions is reviewed and grain-boundary magnetoresistance is interpreted within a model of spin-polarized tunnelling through natural oxide barriers. The situation in ferromagnetic oxides is compared with data and models for conventional ferromagnets. The first part of the review summarizes basic material properties, especially data on the spin-polarization and evidence for half-metallicity. Furthermore, intrinsic conduction mechanisms are discussed. An outlook on the further development of oxide spin-electronics concludes this review.Comment: 133 pages, 47 figures, submitted to Rep. Prog. Phy

    Decision Support Framework for PLM Harmonization Projects within Industrial Companies

    No full text
    Part 6: ImplementationInternational audienceTo this day, as a result of increasing PLM penetration and continuously changing company structures, several PLM solutions have evolved over time and now exist in parallel within many companies. Disharmonized PLM solutions can impede productivity and flexibility in cross-division cooperation and company-internal reorganization projects. A lot of companies carry out PLM harmonization projects with the goal of improving their current situation due to an optimal coordination, adaptation, and standardization of their existing PLM solutions. The present paper introduces a comprehensive framework which supports fundamental decisions that have to be made in this context. This framework allows an objectified determination of harmonization concepts by using both directly and non-directly monetarily quantifiable measures taking into account the perspectives of all of the actors involved. This approach emerged from the experiences gained from several industrial use cases, including the one that is illustrated in this paper
    corecore