4,488 research outputs found

    Structured optical receivers to attain superadditive capacity and the Holevo limit

    Full text link
    When classical information is sent over a quantum channel, attaining the ultimate limit to channel capacity requires the receiver to make joint measurements over long codeword blocks. For a pure-state channel, we construct a receiver that can attain the ultimate capacity by applying a single-shot unitary transformation on the received quantum codeword followed by simultaneous (but separable) projective measurements on the single-modulation-symbol state spaces. We study the ultimate limits of photon-information-efficient communications on a lossy bosonic channel. Based on our general results for the pure-state quantum channel, we show some of the first concrete examples of codes and structured joint-detection optical receivers that can achieve fundamentally higher (superadditive) channel capacity than conventional receivers that detect each modulation symbol individually.Comment: 4 pages, 4 figure

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Reversal of Polarisation of Microwaves from Sun-spots

    Get PDF

    Magnetic Field resulting from non-linear electrical transport in single crystals of charge-ordered Pr0.63_{0.63} Ca0.37_{0.37} MnO3_{3}}

    Full text link
    In this letter we report that the current induced destabilization of the charge ordered (CO) state in a rare-earth manganite gives rise to regions with ferromagnetic correlation. We did this experiment by measurement of the I-V curves in single crystal of the CO system Pr0.63_{0.63}Ca0.37_{0.37}MnO3_{3} and simultanously measuring the magnetization of the current carrying conductor using a high Tc_c SQUID working at T = 77K. We have found that the current induced destabilization of the CO state leads to a regime of negative differential resistance which leads to a small enhancement of the magnetization of the sample, indicating ferromagnetically aligned moments.Comment: 4 pages LateX, 4 eps figure

    Symmetric M-ary phase discrimination using quantum-optical probe states

    Full text link
    We present a theoretical study of minimum error probability discrimination, using quantum- optical probe states, of M optical phase shifts situated symmetrically on the unit circle. We assume ideal lossless conditions and full freedom for implementing quantum measurements and for probe state selection, subject only to a constraint on the average energy, i.e., photon number. In particular, the probe state is allowed to have any number of signal and ancillary modes, and to be pure or mixed. Our results are based on a simple criterion that partitions the set of pure probe states into equivalence classes with the same error probability performance. Under an energy constraint, we find the explicit form of the state that minimizes the error probability. This state is an unentangled but nonclassical single-mode state. The error performance of the optimal state is compared with several standard states in quantum optics. We also show that discrimination with zero error is possible only beyond a threshold energy of (M - 1)/2. For the M = 2 case, we show that the optimum performance is readily demonstrable with current technology. While transmission loss and detector inefficiencies lead to a nonzero erasure probability, the error rate conditional on no erasure is shown to remain the same as the optimal lossless error rate.Comment: 13 pages, 10 figure

    Survivin as a global target of intrinsic tumor suppression networks

    Get PDF
    Despite the constant exposure to genomic insults that may lead to malignancy, cancer is surprisingly a relatively rare occurrence, and this is largely credited to an elaborate network of endogenous tumor suppression. Many effectors of tumor suppression have been identified, and their functions when activated in damaged cells have in large part been elucidated. What is less clear is whether there are common target gene(s) of tumor suppression, whose expression must be ablated in order to block transformation and preserve cellular homeostasis. Fresh experimental evidence suggests that silencing of the mitotic regulator and cell death inhibitor, survivin, is a universal requirement for successful tumor suppression in humans

    Investigating people: a qualitative analysis of the search behaviours of open-source intelligence analysts

    Get PDF
    The Internet and the World Wide Web have become integral parts of the lives of many modern individuals, enabling almost instantaneous communication, sharing and broadcasting of thoughts, feelings and opinions. Much of this information is publicly facing, and as such, it can be utilised in a multitude of online investigations, ranging from employee vetting and credit checking to counter-terrorism and fraud prevention/detection. However, the search needs and behaviours of these investigators are not well documented in the literature. In order to address this gap, an in-depth qualitative study was carried out in cooperation with a leading investigation company. The research contribution is an initial identification of Open-Source Intelligence investigator search behaviours, the procedures and practices that they undertake, along with an overview of the difficulties and challenges that they encounter as part of their domain. This lays the foundation for future research in to the varied domain of Open-Source Intelligence gathering

    Large nonlinear absorption and refraction coefficients of carbon nanotubes estimated from femtosecond Z-scan measurements

    Get PDF
    Nonlinear transmission of 80 and 140 femtosecond pulsed light with 0.79μm0.79 \mu m wavelength through single walled carbon nanotubes suspended in water containing sodium dodecyl sulphate is studied. Pulse-width independent saturation absorption and negative cubic nonlinearity are observed, respectively, in open and closed aperture Z-scan experiments. The theoretical expressions derived to analyze the z-dependent transmission in the saturable limit require two photon absorption coefficient β0\beta_0\sim 1.4cm/MW1.4 cm/MW and a nonlinear index γ5.5×1011cm2/W\gamma \sim -5.5 \times10^{-11} cm^2/W to fit the data.Comment: 10 pages, 2 figures. Accepted and to appear in Applied Physics Letter

    Harnessing Brillouin Interaction in Rare-earth Aluminosilicate Glass Microwires for Optoelectromechanic Quantum Transduction

    Full text link
    Quantum transduction, the process of converting quantum signals from one form of energy to another is a key step in harnessing different physical platforms and the associated qubits for quantum information processing. Optoelectromechanics has been one of the effective approaches to undertake transduction from optical-to-microwave signals, among others such as those using atomic ensembles, collective magnetostatic spin excitations, piezoelectricity and electro-optomechanical resonator using Silicon nitride membrane. One of the key areas of loss of photon conversion rate in optoelectromechanical method using Silicon nitride nanomembranes has been those in the electro-optic conversion. To address this, we propose the use of Brillouin interactions in a fiber mode that is allowed to be passed through a fiber taper in rare-earth Aluminium glass microwires. It suggests that we can efficiently convert a 195.57195.57 THz optical signal to a 325.08325.08 MHz microwave signal with the help of Brillouin interactions, with a whispering stimulated Brillouin scattering mode yielding a conversion efficiency of 45\sim45\%
    corecore