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ABSTRACT. The Zwaan-Kemble method for the calculation of the reflection coeffi­
cient of a barrier has been used to obtain the reflection coefficients of the ordinary and the 
extra-ordinary waves for a parabolic ion barrier. These results have been applied to 
explain the observed rever.sal of polari•nation of microwaves escaping from sunspots.

I I N T R O D U C T I O N

Different workers at different stations have observed that microwaves 
received from sun-spots usually consist of a mixture of right-handed and 
left-handed circularly polarised components. Another characteristic feature 
observed is that when the sun-spot appears at an edge of the visible solar 
disc, one of the components is much stronger than the other, that is, the 
polarisation is almost purely right handed (or left-handed), but as the spot 
moves near the centre of the solar disc both the components become equally 
strong and as it disappears at the other edge of the disc the polarisation again 
becomes roughly pure but of the opposite kind, that is, left-handed (or right- 
handed). In a paper on the conditions of escape of micro-waves from sun­
spots, Saha. Banerjea and Guha (1947) have theoretically shown that the 
polarisation of the escaping wave should be circular and that the magnetic 
field of the spot helps in the escape of one of the components. Ryle (194S) 
has also reached similar conclusions. But the characteristic feature men 
tioned above, namely, the remarkable change in the relative intensities of 
the t\vo polarised components, has not been explained. In the present 
article we shall attempt to explain this feature by calculating the transmission 
co-elScients of a parabolic ion-barrier in a magnetic field. Since the details 
of the actually existing conditions in a sun-spot region are likely to be very 
complicated, the general conclusion reached in sec. VXI has only qualitative 
significance; we have, therefore, based our treatment only on simple as­
sumptions which nevertheless take account of the essential characteristics 
of the {mc l̂em.

n W A V S  E Q U A T I O N S

For plane electromagnetic waves travelling in the direction of the c<m- 
cmttraticai gra<£hent of a non-homogi^eems frictiem-free iono^here, the 
followlog differential equations hold (Stdia, Banerjea and Guha. 1947).
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(A) Transverse case :

dẑ + (I — r)Ex~o  (ordinary wave)

d’‘E
dz

jl+ £

(B). Longitudinal case : —-7,(Ex±iE„) + 
• dZ~

1 1 ------- (extraordinary
\ I _ -J!L_ /

\ I±oyJ

wave)

{2.1)

(2.2)

^EX i  Êp ,1 o ••• (2*3)

where (Ex, =  components of the clecxric vector, p being the pulsatance

2 =  distance measured aloi|g the direction of propagation

N  =  ion density

e and = charge and mass of the electron

eH
P

Ph = me

H  — strength of the external magnetic field.

Ill  l > A R A B O I , I C  L A Y E R  

If the ion-barrier is parabolic with half width I, that is, if

N =  N m l i - ^ d l .  [s e e F ig .i.]

Nw

F i g . I

then equations (2.1) and (2.2) respectively reduce to

y*' + K * 12* “  a*)̂ > =“ o

and + K a (2®-6®) tp — O

(3-1)

... (a-a)”

.♦ .This eqoation for the extra-ordinary wave was given to the anthor by Pi of. M. N. 
Saha. It does not appear to have been discussed by any previous worker.
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where \l\Po* )

- Po* )\ l\

/>o =  critical pulsataucc of the ordinary wave.

We shall now calculate the transmission coefiBcients of the barrier for 
waves satisfying equations (3.1) & (3.2) respectively. It will be atonce 
noticed that this problem is similar to the quantum-mechanical problem of 
calculating the transmission coefficient of a potential barrier for matter waves, 
which, as is well known, has been tackled by different workers in different 
ways, sometimes yielding different results for the same problem. We shall 
here adopt a method used by Kemble (1935) but with different approxima­
ting functions in place of the B.W .K . approximations used by him. This  
simplifies the calculations in our case, but to be more sure about the validity 
of our method, we shall also calculate the transmission coefficient of the 
ordinary wave in an alternative way. It is assumed that the width of the 
barrier is sufficiently large for the application of the following methods.

IV T R A N  vS V E R S E  C A S E  
(Ordinary wave)

(A) Kemble’s method :

Taking equation (3.1) we consider asymptotic representations of 0(2) of 
the form where o- is a constant and P\z) a polynomial in z. These
are found to be

(ji'K**g- i - 'Kn/2 1
f ... (4.1)

ii^z) =  )
and

The differential equations (in the normal form) satisfied by these 
functions are

tKa*

/a *o , where =  — i  +
2

(4*2)

/ " ,  +  | =  w here - 4 -

and /"*+ K*(z*“ a*)--
IL.

Hence fx and /* will give good approximation for 0 whenever a 
is large. We now propose to fit the linear combination ai<z)/i(z)+«,(«)/.(*) 
to an exact solution 0 (a) of the equation (3.1), so that we take

+ aa{z)f»{z) *  0(«) )

+ aa(*)/a'(a)®= 0'(«) J .  ̂ ^
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Solving these equations for Uiiz) and a^iz), we obtain

n

« l(s)=
- 2 iK  +

iKa-

z k : large | z

zKz^

0/2 from (3.1) aud (4.2}

■iKâ I from + «2/2 and equation (4.1)
/ k-

Hence e-iKz^ II a j

where Ai  and Bi are positive constants of the problem.

ASimilarly da^
dz

B2 ( «2 I + I eiKẑ  II a, I

]

]

(4.4)

(4-5)

W e notice that on both sides of the the barrier fiiz) and fsiz) respective­
ly represent waves entering and leaving the barrier. Now consider a path 
r  in the lower half of the complex a-plane (Fig. 2), starting at + 1, the right 
hand end of the barrier and terminating at — / the left hand end, such 
that 1 z I always remains large on P. Now, supposing that waves are incident 
on the left hand side of the barrier aud transmited through the right hand 
side, we put ax = o and a 2 = i at z=  + 1. From equation (4.4) it follows that

- / -i-Z

throughout the first half of the path P  (t.e. the portion in the 4th quadrant) 
tti remains practically constant (i.e. ai =  o). Since Ui^o  in this portion of the 
path it follows from equation (4.5) that U2 also remains constant (i.e. Oz^i).  
These equations also show that a» remains constant throughout the rest of 
the path but ai may change. Thus, at 2** —1 we have ai — c, say, and az — i.  
Hence we have established a connection formula fz + cfi <—

where /a(-f \
/ , ( - ! )  V . . . .  (4.6>

and )
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Since damping has been neglected, we have

u n / x ( - i )  1/2(0 l*+ (/a (-0  p

|g|"= -TTga^ using (4.6)
e

If To denotes the transmission coefficient, then

T  *=: /a(~*~0 1
c / ,( - 0  I

i 4-e i  + e
(4 -7)

(Bj Alternative method :

We look for a solution of the differential equation (3.1) behaving
asymptotically as follows :

0 (s) ~  ^3(2) in the neighbourhood of s =  

and 0(2) ~  ■ l̂iz)+^a(z) ,, ■ . ,» z — — I,

where 3̂ and both represent waves leaving the barrier, and represents 
waves entering the berrier, so that

^i(«) represents the incident weve 

'̂2(2) ,, ,, reflected wave

and ^3(2) ,, ,, transmitted wave

The reflection coefficient Ro will therefore be given by

Change the independent variable in equation (3.1) from 2 to £ where

Va/CeW42 and put n = iKa^
a

, , I

•4. W e get

(4.8)

Moreover, arg for z real and positive
4

and — — ^  for 2 real and negative. 4
The differential equation (4.8) is known as Weber’s equation. From the 
properties of its solution D„{$) discussed in Whittaker and W atson's book on 
Modern analysis fpp. 347-349) we get

for arg 4*/4 (transmitted wave)4



and for arg (reflected wave)
4

+ e-*nirfg{»/4 1 (incident wave)
i  (— ;

Hence, from the remarks made above, it follo|vs that

__^ { V 4 $'
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Ro =
\/ 2Tt _Lg —furi e€*/4*t~"“ *

r ( - « )

r (  — M)c- i Vl  2̂M+I gniri_ I 
s/ 27T
eirKâ l4

27T \ H  ‘ J
erKâ /4

V acosh*' '̂**/  ̂

ro“= i-i? o "

_  I
I + c»Kfit2

irKfl(l-̂ p̂ /pÔ )1 +  e
which is the same as equation (4.7).

V. T R A N S V E R S E  C A S E  

(Extra-ordinary wave)

Taking equation (3.3) and adopting method (A) of sec. IV, we find 
that in this case the asymptotic representations of 0(2) are

and ^ - i  + iK a »  + »o-d»)

In this case also it can be easily shown that the coefficient function occurring 
in equation (3.2) differs from the coefficient functions occarring in the 
differential equations (in the normal form) satisfied by fi(z) and f^iz) by 
terms of the order of i/z®. Hence, the method applied in (A) of sec IV ., 
can be adopted here without any alteration. Thus, if T* denotes the 
transmission coefficient in this case, then

r ?  =
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Tê

i + e ^ ^ V  PS PS/
(s-i)

for large />*, that is for large magnetic field.
Had we assumed that the magnetic field also varies parabolically, so that

H =H m  place of equation (3.3) we would have obtained

••• (5*̂ ^

This gives r *2  =  i.

Thus when the magnetic field is large and constant, or when it varies 
as above, the barrier is almost transparent to the extra-ordinary wave.

VI. L O N G I T U D I N A I /  C A S E

If we consider a parabolic ion-barrier N  =  n J(̂ i  ~ f * )   ̂ large cons­

tant magnetic field so that, I, then equation (2.3) gives two circularly
polarised waves of opposite senses determined by equations of the type

+ — O*)0i = 0  ... (6.i)

and 0"a — —o®)^8 =  o ... (6.2)

Since the disturbance satisfying equation (6.2) has no wave character for 
\z\>-a, it can not leak through the barrier as a wave. Hence, only the 
component satisfying equation (6.i) leaks through the barrier with a certain 
transmission coefficient.

But if we assumed a parabolic variation for the magnetic field aS well, 

so that H  =  — then we would have obtained in place of the equa­

tions (6.1) and (6.2) the equations

s {z^—a^) . _

and
\Z —  o )

(^.3)

(6.4)

The equations (6.3) and (6.4) are easily seen, by the methods already 
discussed, to give values of the transmission coefficients

as
and

Tj® =
T«8 =^} (6.S>

The assumed variation of the magnetic field thus makes the barrier equally 
transparent to both the circularly polarised components.



VIT. M I C R O W A V E S  F R O M  S U N S P O T S

Now consider a sunspots S moving along the central equator from one 
edge of the visible solar disc to the other e4 ge> Consider the plane contain-
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nr
positive direction of the magnetic lines of fo r^  make on the average a mean 
angle « ( ZN Syl) with the positive direction of SN.  Then it follows that 
the angle 0 between the direction of propagation of the microwaves 
towards the eaith and the positive direction of the magnetic lines of force

varies in magnitude from* -  — alto' -t-a , The cases 6 =  o. “  n-
t 2 2 2 2

correspond respectively to south pole, southern hemisphere, equator, 
northern hemisphere, north pole (in the language of propagation in the 
earth’s ionosphere). Hence, the propagation of the microwaves through 
the ionosphere of the spot, as the latter moves from one edge of the solar 
disc to the other edge, has one-to-one correspondence with propagation of 
radio waves through the earth's ionosphere when the source on the earth 
traverses an angle n- along a meridian from a point P to a point Q, say.

From Secs. I V  and V  it follow's that when this propagation becomes 
tranverse, T,® and is much greater than T„®, so that one of the 
polarised components is much stronger than the other, where as w’hen the 
propagation becomes longitudinal, we have Ti'‘ — Ta‘  — i  from equation 
(6.5), so that the two polarised components are equally strong. It is natural 
to expect that similar results will hold for the quasi-transverse and the 
quasi-longitudinal cases. This gives the reason for the change in the 
relative intensities of the two polarised components mentioned in sec. I. 
The reversal of the senses of polarisation of the two componeots obviously 
depends upon the angle a, because the senses of polarisation of the two 
components are opposite in the two hemispheres.

For example, in the case of a uni-polar spot we may take a  =  o or w, 
so that the path on the meridian from P  to Q lies on the same hemisphere 
and there should therefore be no reversal of the sense of polarisation. On 
the other hand if the spot is a member of a bi-polar spot group, then a  
shotild be different from o and x, so that P  and Q  lie in different
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hemispheres. Hence, there will be a reversal of the senses of polarisation, 

the actual duration through which the stronger component remains left- 

handed or right-handed depending upon the actual value of a.
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