89 research outputs found

    Circadian Phase Resetting via Single and Multiple Control Targets

    Get PDF
    Circadian entrainment is necessary for rhythmic physiological functions to be appropriately timed over the 24-hour day. Disruption of circadian rhythms has been associated with sleep and neuro-behavioral impairments as well as cancer. To date, light is widely accepted to be the most powerful circadian synchronizer, motivating its use as a key control input for phase resetting. Through sensitivity analysis, we identify additional control targets whose individual and simultaneous manipulation (via a model predictive control algorithm) out-perform the open-loop light-based phase recovery dynamics by nearly 3-fold. We further demonstrate the robustness of phase resetting by synchronizing short- and long-period mutant phenotypes to the 24-hour environment; the control algorithm is robust in the presence of model mismatch. These studies prove the efficacy and immediate application of model predictive control in experimental studies and medicine. In particular, maintaining proper circadian regulation may significantly decrease the chance of acquiring chronic illness

    Analysis Method and Experimental Conditions Affect Computed Circadian Phase from Melatonin Data

    Get PDF
    Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used

    Pathophysiology and pathogenesis of circadian rhythm sleep disorders

    Get PDF
    Metabolic, physiological and behavioral processes exhibit 24-hour rhythms in most organisms, including humans. These rhythms are driven by a system of self-sustained clocks and are entrained by environmental cues such as light-dark cycles as well as food intake. In mammals, the circadian clock system is hierarchically organized such that the master clock in the suprachiasmatic nuclei of the hypothalamus integrates environmental information and synchronizes the phase of oscillators in peripheral tissues. The transcription and translation feedback loops of multiple clock genes are involved in the molecular mechanism of the circadian system. Disturbed circadian rhythms are known to be closely related to many diseases, including sleep disorders. Advanced sleep phase type, delayed sleep phase type and nonentrained type of circadian rhythm sleep disorders (CRSDs) are thought to result from disorganization of the circadian system. Evaluation of circadian phenotypes is indispensable to understanding the pathophysiology of CRSD. It is laborious and costly to assess an individual's circadian properties precisely, however, because the subject is usually required to stay in a laboratory environment free from external cues and masking effects for a minimum of several weeks. More convenient measurements of circadian rhythms are therefore needed to reduce patients' burden. In this review, we discuss the pathophysiology and pathogenesis of CRSD as well as surrogate measurements for assessing an individual's circadian phenotype

    Response of the Human Circadian System to Millisecond Flashes of Light

    Get PDF
    Ocular light sensitivity is the primary mechanism by which the central circadian clock, located in the suprachiasmatic nucleus (SCN), remains synchronized with the external geophysical day. This process is dependent on both the intensity and timing of the light exposure. Little is known about the impact of the duration of light exposure on the synchronization process in humans. In vitro and behavioral data, however, indicate the circadian clock in rodents can respond to sequences of millisecond light flashes. In a cross-over design, we tested the capacity of humans (n = 7) to respond to a sequence of 60 2-msec pulses of moderately bright light (473 lux) given over an hour during the night. Compared to a control dark exposure, after which there was a 3.5±7.3 min circadian phase delay, the millisecond light flashes delayed the circadian clock by 45±13 min (p<0.01). These light flashes also concomitantly increased subjective and objective alertness while suppressing delta and sigma activity (p<0.05) in the electroencephalogram (EEG). Our data indicate that phase shifting of the human circadian clock and immediate alerting effects can be observed in response to brief flashes of light. These data are consistent with the hypothesis that the circadian system can temporally integrate extraordinarily brief light exposures

    Early Presymptomatic and Long-Term Changes of Rest Activity Cycles and Cognitive Behavior in a MPTP-Monkey Model of Parkinson's Disease

    Get PDF
    It is increasingly recognized that non-motor symptoms are a prominent feature of Parkinson's disease and in the case of cognitive deficits can precede onset of the characteristic motor symptoms. Here, we examine in 4 monkeys chronically treated with low doses of the neurotoxin MPTP the early and long-term alterations of rest-activity rhythms in relationship to the appearance of motor and cognitive symptoms.Behavioral activity recordings as well as motor and cognitive assessments were carried out continuously and in parallel before, during and for several months following MPTP-treatment (12–56 weeks). Cognitive abilities were assessed using a task that is dependent on the functional integrity of the fronto-striatal axis. Rest-activity cycles were monitored continuously using infrared movement detectors of locomotor activity. Motor impairment was evaluated using standardized scales for primates. Results show that MPTP treatment led to an immediate alteration (within one week) of rest-activity cycles and cognitive deficits. Parkinsonian motor deficits only became apparent 3 to 5 weeks after initiating chronic MPTP administration. In three of the four animals studied, clinical scores returned to control levels 5–7 weeks following cessation of MPTP treatment. In contrast, both cognitive deficits and chronobiological alterations persisted for many months. Levodopa treatment led to an improvement of cognitive performance but did not affect rest-activity rhythms in the two cases tested.Present results show that i) changes in the rest activity cycles constituted early detectable consequences of MPTP treatment and, along with cognitive alterations, characterize the presymptomatic stage; ii) following motor recovery there is a long-term persistence of non-motor symptoms that could reflect differential underlying compensatory mechanisms in these domains; iii) the progressive MPTP-monkey model of presymptomatic ongoing parkinsonism offers possibilities for in-depth studies of early non-motor symptoms including sleep alterations and cognitive deficits

    Plasticity of the Intrinsic Period of the Human Circadian Timing System

    Get PDF
    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration

    Performance and Alertness after combined exposure to chronic and acute sleep loss and circadian misalignment

    No full text
    Objectives Many individuals are exposed to combinations of acute and chronic sleep loss as well as repeated circadian misalignment in real life. A key question is whether the effects of chronic sleep loss accumulated during the work week can be completely eliminated by long sleep bouts during the weekend. Insight in the recovery process of performance and mood from sleep loss is needed to increase safety in shiftwork and other work environments. Methods and materials Ten healthy volunteers (3 females, mean (SD) age of 28.3 (4.2) years) were studied during a 65- day inpatient stay that included (i) three baseline 24.0-hr days (16-hr wake), (ii) a constant routine protocol (CR1, 41.33-hr wake), (iii) a forced desynchrony (FD) protocol consisting of 12 consecutive 28-hr sleep-wake cycles (18.67-hr wake), (iv) a CR protocol (CR2, 33-52-hr wake) that ended such that the individual´s circadian phase of awakening of the next segment would be the same as during baseline, (v) a 5-day recovery segment with 24-hr days (16-hr wake), and (vi) a CR protocol (CR3; 40.1-40.5-hr wake). Performance was tested every two hours whenever the individual was awake with a 10-min Psychomotor Vigilance Task (PVT), a 2-min Addition test (ADD, number correct) and Visual Analog Scales (VAS) that included Alert-Sleepy scale. The ADD test results were expected to increase across the protocol since there is a learning component. Linear or Generalized linear mixed models were used to compare: (i) Baseline Wake Periods (WP) 2 and 3 vs. last 2 Recovery WP; (ii) CR1 vs CR3; (iii) 1st 6 WP vs 2nd 6 WP of FD; and (iv) 1st 2 vs. last 2 Recovery WP. Additional details of the protocol and original study results are in Gronfier et al 2007 (PNAS). Results PVT median RT and lapses worsened from BL to the end of Recovery, from CR1 to CR3, from 1st to 2nd 6 WP of FD. ADD correct results increased from BL to the end of Recovery, from CR1 to CR3, from 1st to 2nd 6 WP of FD, and from the 1st to last 2nd WP of Recovery. VAS alertness improved from CR1 to CR3. Conclusions The worsening of PVT median and lapses suggests an effect of combined exposure to acute sleep deprivation and circadian misalignment. To what extent this is due to incomplete recovery and/or other elements of the protocol requires further investigation. The stable or improved subjective alertness during these same times is consistent with the known discrepancy between subjective and objective metrics under these condition
    corecore