67 research outputs found

    Atomic-force microscopy imaging of plasma membranes purified from spinach leaves

    Get PDF
    Summary: Plasma membranes purified from spinach leaves by aqueous two-phase partitioning were examined by atomic-force microscopy (AFM) in phosphate buffer, and details on their structure were reported at nanometric scale. Examination of the fresh membrane preparation deposited on mica revealed a complex organization of the surface. It appeared composed of a first layer of material, about 8 nm in thickness, that practically covered all the mica surface and on which stand structures highly heterogeneous in shape and size. High-resolution imaging showed that the surface of the first layer appeared relatively smooth in some regions, whereas different characteristic features were observed in other regions. They consisted of globular-to-elliptical protruding particles of various sizes, from 4-5 nm x-y size for the smallest to 40-70 nm for the largest, and of channel-like structures 25-30 nm in diameter with a central hole. Macromolecular assemblies of protruding particles of various shapes were imaged. Addition of the proteolytic enzyme pronase led to a net roughness decrease in regions covered with particles, indicating their proteinaceous nature. The results open fascinating perspectives in the investigation of membrane surfaces in plant cells with the possibility to get structural information at the nanometric rang

    Imaging of the Cytoplasmic Leaflet of the Plasma Membrane by Atomic Force Microscopy

    Get PDF
    The cytoplasmic face of ventral cell membranes of Madin-Darby canine kidney (MDCK) cells grown on glass coverslips was imaged by atomic force microscopy (AFM) in air and under aqueous medium, in contact mode. Micrometer range scans on air-dried samples revealed a heterogeneous structure with some filaments, likely corresponding to actin filaments that abut the inner leaflet of the membrane, and a few semi-organized lattice structures that might correspond to clathrin lattices. Experiments in phosphate-buffered saline confirmed the heterogeneity of the inner membrane surface with the presence of large (\u3e 100 nm) globular structures emerging from the surface. Using sub-micrometer scan ranges, protruding particles, that occupy most of the membrane surface, were imaged in liquid medium and in air. These particles, 8 to 40 nm x-y size, were still present following ethanol dehydration which extracts a large fraction of membrane lipids, indicating their proteic nature. Due, at least partly, to the presence of some peripheral proteins, high magnification images of the inner membrane surface were heterogeneous with regard to particle distribution. These data compare with those previously reported for the external membrane leaflet at the surface of living MDCK cells. They show that details of the cytosolic membrane surface can be resolved by AFM. Finally, the images support the view of a plasma membrane organization where proteins come into close proximity

    Deciphering the Structure, Growth and Assembly of Amyloid-Like Fibrils Using High-Speed Atomic Force Microscopy

    Get PDF
    Formation of fibrillar structures of proteins that deposit into aggregates has been suggested to play a key role in various neurodegenerative diseases. However mechanisms and dynamics of fibrillization remains to be elucidated. We have previously established that lithostathine, a protein overexpressed in the pre-clinical stages of Alzheimer's disease and present in the pathognomonic lesions associated with this disease, form fibrillar aggregates after its N-terminal truncation. In this paper we visualized, using high-speed atomic force microscopy (HS-AFM), growth and assembly of lithostathine protofibrils under physiological conditions with a time resolution of one image/s. Real-time imaging highlighted a very high velocity of elongation. Formation of fibrils via protofibril lateral association and stacking was also monitored revealing a zipper-like mechanism of association. We also demonstrate that, like other amyloid ß peptides, two lithostathine protofibrils can associate to form helical fibrils. Another striking finding is the propensity of the end of a growing protofibril or fibril to associate with the edge of a second fibril, forming false branching point. Taken together this study provides new clues about fibrillization mechanism of amyloid proteins

    Visualization of trp repressor and its complexes with DNA by atomic force microscopy.

    Get PDF
    We used tapping mode atomic force microscopy to visualize the protein/protein and the protein/DNA complexes involved in transcriptional regulation by the trp repressor (TR). Plasmid fragments bearing the natural operators trp EDCBA and trp R, as well as nonspecific fragments, were deposited onto mica in the presence of varying concentrations of TR and imaged. In the presence of L-tryptophan, both specific and nonspecific complexes of TR with DNA are apparent, as well as free TR assemblies directly deposited onto the mica surface. We observed the expected decrease in specificity of TR for its operators with increasing protein concentration (1-5 nM). This loss of DNA-binding specificity is accompanied by the formation of large protein assemblies of varying sizes on the mica surface, consistent with the known tendency of the repressor to oligomerize in solution. When the co-repressor is omitted, no repressor molecules are seen, either on the plasmid fragments or free on the mica surface, probably because of the formation of larger aggregates that are removed from the surface upon washing. All these findings support a role for protein/protein interactions as an additional mechanism of transcriptional regulation by the trp repressor

    Temperature-dependent localization of GPI-anchored Intestinal alkaline Phosphatase in model rafts

    No full text
    International audienc
    • …
    corecore