25 research outputs found

    No supra-additive effects of goserelin and radiotherapy on clonogenic survival of prostate carcinoma cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncological results of radiotherapy for locally advanced prostate cancer (PC) are significantly improved by simultaneous application of LHRH analoga (e.g. goserelin). As 85% of PC express LHRH receptors, we investigated the interaction of goserelin incubation with radiotherapy under androgen-deprived conditions in vitro.</p> <p>Methods</p> <p>LNCaP and PC-3 cells were stained for LHRH receptors. Downstream the LHRH receptor, changes in protein expression of c-fos, phosphorylated p38 and phosphorylated ERK1/2 were analyzed by means of Western blotting after incubation with goserelin and irradiation with 4 Gy. Both cell lines were incubated with different concentrations of goserelin in hormone-free medium. 12 h later cells were irradiated (0 – 4 Gy) and after 12 h goserelin was withdrawn. Endpoints were clonogenic survival and cell viability (12 h, 36 h and 60 h after irradiation).</p> <p>Results</p> <p>Both tested cell lines expressed LHRH-receptors. Changes in protein expression demonstrated the functional activity of goserelin in the tested cell lines. Neither in LNCaP nor in PC-3 any significant effects of additional goserelin incubation on clonogenic survival or cell viability for all tested concentrations in comparison to radiation alone were seen.</p> <p>Conclusion</p> <p>The clinically observed increase in tumor control after combination of goserelin with radiotherapy in PC cannot be attributed to an increase in radiosensitivity of PC cells by goserelin in vitro.</p

    GnRH and LHR gene variants predict adverse outcome in premenopausal breast cancer patients

    Get PDF
    Background: Breast cancer development and progression are dependent on estrogen activity. In premenopausal women, estrogen production is mainly regulated through the hypothalamic-pituitary-gonadal (HPG) axis. Methods: We have investigated the prognostic significance of two variants of genes involved in the HPG-axis, the GnRH (encoding gonadotropin-releasing hormone) 16Trp/Ser genotype and the LHR (encoding the luteinizing hormone receptor) insLQ variant, in retrospectively collected premenopausal breast cancer patients with a long follow-up (median follow-up of 11 years for living patients). Results: Carriership was not related with breast cancer risk (the case control study encompassed 278 premenopausal cases and 1,758 premenopausal controls). A significant adverse relationship of the LHR insLQ and GnRH 16Ser genotype with disease free survival (DFS) was observed in premenopausal (hormone receptor positive) breast cancer patients. In particular, those patients carrying both the GnRH 16Ser and LHR insLQ allele (approximately 25%) showed a significant increased risk of relapse, which was independent of traditional prognostic factors (hazard ratio 2.14; 95% confidence interval 1.32 to 3.45; P = 0.002). Conclusion: We conclude that the LHR insLQ and GnRH 16Ser alleles are independently associated with shorter DFS in premenopausal patients. When validated, these findings may provide a lead in the development of tailored treatment for breast cancer patients carrying both pol

    CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo

    Get PDF
    Thus far the clinical benefits seen in breast cancer patients treated with drugs targeting the vascular endothelial growth factor (VEGF) pathway are only modest. Consequently, additional antiangiogenic approaches for treatment of breast cancer need to be investigated. Thrombospondin-2 (TSP-2) has been shown to inhibit tumor growth and angiogenesis with a greater potency than the related molecule TSP-1. The systemic effects of TSP-2 on tumor metastasis and the underlying molecular mechanisms of the antiangiogenic activity of TSP-2 have remained poorly understood. We generated a recombinant fusion protein consisting of the N-terminal region of TSP-2 and the IgG-Fc1 fragment (N-TSP2-Fc) and could demonstrate that the antiangiogenic activity of N-TSP2-Fc is dependent on the CD36 receptor. We found that N-TSP2-Fc inhibited VEGF-induced tube formation of human dermal microvascular endothelial cells (HDMEC) on matrigel in vitro and that concurrent incubation of anti-CD36 antibody with N-TSP2-Fc resulted in tube formation that was comparable to untreated control. N-TSP2-Fc potently induced apoptosis of HDMEC in vitro in a CD36-dependent manner. Moreover, we could demonstrate a CD36 receptor-mediated loss of mitochondrial membrane potential and activation of caspase-3 in HDMEC in vitro. Daily intraperitoneal injections of N-TSP2-Fc resulted in a significant inhibition of the growth of human MDA-MB-435 and MDA-MB-231 tumor cells grown in the mammary gland of immunodeficient nude mice and in reduced tumor vascularization. Finally, increased serum concentrations of N-TSP2-Fc significantly inhibited regional metastasis to lymph nodes and distant metastasis to lung as shown by quantitative real-time alu PCR. These results identify N-TSP2-Fc as a potent systemic inhibitor of tumor metastasis and provide strong evidence for an important role of the CD36 receptor in mediating the antiangiogenic activity of TSP-2
    corecore