1,544 research outputs found

    Exotic plasma as classical Hall Liquid

    Full text link
    A non-relativistic plasma model endowed with an ``exotic'' structure associated with the two-parameter central extension of the planar Galilei group is constructed. Introducing a Chern-Simons statistical gauge field provides us with a self-consistent system; when the magnetic field takes a critical value determined by the extension parameters, the fluid becomes incompressible and moves collectively, according to the Hall law.Comment: 11 pages, LaTex, no figures. Revised version: Some details better explained. To appear in Int. Journ. Mod. Phys.

    Failure of mean-field approach in out-of-equilibrium Anderson model

    Full text link
    To explore the limitations of the mean field approximation, frequently used in \textit{ab initio} molecular electronics calculations, we study an out-of-equilibrium Anderson impurity model in a scattering formalism. We find regions in the parameter space where both magnetic and non-magnetic solutions are stable. We also observe a hysteresis in the non-equilibrium magnetization and current as a function of the applied bias voltage. The mean field method also predicts incorrectly local moment formation for large biases and a spin polarized current, and unphysical kinks appear in various physical quantities. The mean field approximation thus fails in every region where it predicts local moment formation.Comment: 5 pages, 5 figure

    Low-Dimensional Long-Range Topological Charge Structure in the QCD Vacuum

    Get PDF
    While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge density, we present evidence for such structure in pure-glue SU(3) lattice gauge theory. It is found that a typical equilibrium configuration is dominated by two oppositely-charged sign-coherent connected structures (``sheets'') covering about 80% of space-time. Each sheet is built from elementary 3-d cubes connected through 2-d faces, and approximates a low-dimensional curved manifold (or possibly a fractal structure) embedded in the 4-d space. At the heart of the sheet is a ``skeleton'' formed by about 18% of the most intense space-time points organized into a global long-range structure, involving connected parts spreading over maximal possible distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral symmetry breaking.Comment: 4 pages RevTeX, 4 figures; v2: 6 pages, 5 figures, more explanations provided, figure and references added, published versio

    Non-equilibrium transport theory of the singlet-triplet transition: perturbative approach

    Full text link
    We use a simple iterative perturbation theory to study the singlet-triplet (ST) transition in lateral and vertical quantum dots, modeled by the non-equilibrium two-level Anderson model. To a great surprise, the region of stable perturbation theory extends to relatively strong interactions, and this simple approach is able to reproduce all experimentally-observed features of the ST transition, including the formation of a dip in the differential conductance of a lateral dot indicative of the two-stage Kondo effect, or the maximum in the linear conductance around the transition point. Choosing the right starting point to the perturbation theory is, however, crucial to obtain reliable and meaningful results

    Calorons, instantons and constituent monopoles in SU(3) lattice gauge theory

    Full text link
    We analyze the zero-modes of the Dirac operator in quenched SU(3) gauge configurations at non-zero temperature and compare periodic and anti-periodic temporal boundary conditions for the fermions. It is demonstrated that for the different boundary conditions often the modes are localized at different space-time points and have different sizes. Our observations are consistent with patterns expected for Kraan - van Baal solutions of the classical Yang-Mills equations. These solutions consist of constituent monopoles and the zero-modes are localized on different constituents for different boundary conditions. Our findings indicate that the excitations of the QCD vacuum are more structured than simple instanton-like lumps.Comment: Remarks added. To appear in Phys. Rev.

    On three-rowed Chomp

    Get PDF
    Chomp is a 50 year-old game played on a partially ordered set P. It has been in the center of interest of several mathematicians since then. Even when P is simply a 3 × n lattice, we have almost no information about the winning strategy. In this paper we present a new approach and a cubic algorithm for computing the winning positions for this case. We also prove that from the initial positions there are infinitely many winning moves in the third row

    On three-rowed Chomp

    Get PDF
    Chomp is a 50 year-old game played on a partially ordered set P. It has been in the center of interest of several mathematicians since then. Even when P is simply a 3 × n lattice, we have almost no information about the winning strategy. In this paper we present a new approach and a cubic algorithm for computing the winning positions for this case. We also prove that from the initial positions there are infinitely many winning moves in the third row

    Invariance Conditions for Nonlinear Dynamical Systems

    Full text link
    Recently, Horv\'ath, Song, and Terlaky [\emph{A novel unified approach to invariance condition of dynamical system, submitted to Applied Mathematics and Computation}] proposed a novel unified approach to study, i.e., invariance conditions, sufficient and necessary conditions, under which some convex sets are invariant sets for linear dynamical systems. In this paper, by utilizing analogous methodology, we generalize the results for nonlinear dynamical systems. First, the Theorems of Alternatives, i.e., the nonlinear Farkas lemma and the \emph{S}-lemma, together with Nagumo's Theorem are utilized to derive invariance conditions for discrete and continuous systems. Only standard assumptions are needed to establish invariance of broadly used convex sets, including polyhedral and ellipsoidal sets. Second, we establish an optimization framework to computationally verify the derived invariance conditions. Finally, we derive analogous invariance conditions without any conditions

    Local Chirality of Low-Lying Dirac Eigenmodes and the Instanton Liquid Model

    Get PDF
    The reasons for using low-lying Dirac eigenmodes to probe the local structure of topological charge fluctuations in QCD are discussed, and it is pointed out that the qualitative double-peaked behavior of the local chiral orientation probability distribution in these modes is necessary, but not sufficient for dominance of instanton-like fluctuations. The results with overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported, and it is found that the size and density of local structures responsible for double-peaking of the distribution are in disagreement with the assumptions of the Instanton Liquid Model. More generally, our results suggest that vacuum fluctuations of topological charge are not effectively dominated by locally quantized (integer-valued) lumps in QCD.Comment: 29 pages, 13 figures; v2: minor improvements in presentation, results and conclusions unchanged, version to appear in PR
    corecore