1,392 research outputs found
The Limits of Discipline: Ownership and Hard Budget Constraints in the Transition Economies
This paper argues that the imposition of financial discipline is not sufficient to remedy ownership and governance-related deficiencies of corporate performance. Using evidence from the postcommunist transition economies, the paper shows that a policy of hard budget constraints falters when state firms, because of inferior revenue performance and lesser willingness to meet payment obligations, continue to pose higher credit risk than privatized firms. The brunt of state firms' lower creditworthiness falls on state creditors. But the "softness" of these creditors is unavoidable if it prevents a demise of firms that are in principle capable of successful restructuring through ownership changes.OWNERSHIP; FINANCIAL DISCIPLINE; PERFORMANCE; TRANSITION.
Universal transport in 2D granular superconductors
The transport properties of quench condensed granular superconductors are
presented and analyzed. These systems exhibit transitions from insulating to
superconducting behavior as a function of inter-grain spacing.
Superconductivity is characterized by broad transitions in which the resistance
drops exponentially with reducing temperature. The slope of the log R versus T
curves turns out to be universaly dependent on the normal state film resistance
for all measured granular systems. It does not depend on the material, critical
temperature, geometry, or experimental set-up. We discuss possible physical
scenarios to explain these findings.Comment: 4 pages, 3 figure
Ulta-slow relaxation in discontinuous-film based electron glasses
We present field effect measurements on discontinuous 2D thin films which are
composed of a sub monolayer of nano-grains of Au, Ni, Ag or Al. Like other
electron glasses these systems exhibit slow conductance relaxation and memory
effects. However, unlike other systems, the discontinuous films exhibit a
dramatic slowing down of the dynamics below a characteristic temperature .
is typically between 10-50K and is sample dependent. For the
sample exhibits a few other peculiar features such as repeatable conductance
fluctuations in millimeter size samples. We suggest that the enhanced system
sluggishness is related to the current carrying network becoming very dilute in
discontinuous films so that the system contains many parts which are
electrically very weakly connected and the transport is dominated by very few
weak links. This enables studying the glassy properties of the sample as it
transitions from a macroscopic sample to a mesocopic sample, hence, the results
provide new insight on the underlying physics of electron glasses.Comment: 4 pages, 4 figure
A Generalized Discrete Event System (G-DEVS) Flattened Simulation Structure: Application to High-Level Architecture (HLA) Compliant Simulation of Workflow
International audienceThe objective of the paper is to specify a new flattened Generalized Discrete Event System simulation engine structure and the Workflow modeling and simulation environment embedding it. We express first the new flattened simulation structure and give the corresponding transformation functions. We analyze performance tests conducted on this new simulation structure to measure its efficiency. Then, having selected the essential concepts in the elaboration of the Workflow, we present a language of description to define the Workflow processes. Finally, we define a distributed Workflow Reference Model that interfaces components of the Workflow with respect to the High-Level Architecture standard. Today enterprises can take advantage of this platform in the context of networking where interoperability, flexibility, and efficiency are challenging concepts
Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit
We report on transport and tunneling measurements performed on ultra-thin
Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by
quench condensation. The critical temperature and energy gap of the
heterostructures oscillate with addition of each layer, demonstrating the
validity of the Cooper limit model in the case of multilayers. We observe
excellent agreement with a simple theory for samples with layer thickness
larger than 30\AA . Samples with single layers thinner than 30\AA deviate from
the Cooper limit theory. We suggest that this is due to the "inverse proximity
effect" where the normal metal electrons improve screening in the
superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure
Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System
Mitochondrial DNA (mtDNA) mutations cause a wide range of serious diseases with high transmission risk and maternal inheritance. Tissue heterogeneity of the heteroplasmy rate (“mutant load”) accounts for the wide phenotypic spectrum observed in carriers. Owing to the absence of therapy, couples at risk to transmit such disorders commonly ask for prenatal (PND) or preimplantation diagnosis (PGD). The lack of data regarding heteroplasmy distribution throughout intrauterine development, however, hampers the implementation of such procedures. We tracked the segregation of the m.3243A > G mutation (MT-TL1 gene) responsible for the MELAS syndrome in the developing embryo/fetus, using tissues and cells from eight carrier females, their 38 embryos and 12 fetuses. Mutant mtDNA segregation was found to be governed by random genetic drift, during oogenesis and somatic tissue development. The size of the bottleneck operating for m.3243A > G during oogenesis was shown to be individual-dependent. Comparison with data we achieved for the m.8993T > G mutation (MT-ATP6 gene), responsible for the NARP/Leigh syndrome, indicates that these mutations differentially influence mtDNA segregation during oogenesis, while their impact is similar in developing somatic tissues. These data have major consequences for PND and PGD procedures in mtDNA inherited disorders. Hum Mutat 32:116–125, 2011. © 2010 Wiley-Liss, Inc
Pancreatic β-Cell Death in Response to Pro-Inflammatory Cytokines Is Distinct from Genuine Apoptosis
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.
DOI: 10.1371/journal.pone.002248
The E2 Ubiquitin-conjugating Enzyme UBE2J1 Is Required for Spermiogenesis in Mice
ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1−/− mice have reduced viability and fail to thrive early after birth. Male Ube2j1−/− mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1−/− elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.United States. National Institutes of Health (P30-CA14051
Privatization and State Capacity in Postcommunist Society
Economists have used cross-national regression analysis to argue that postcommunist economic failure is the result of inadequate adherence liberal economic policies. Sociologists have relied on case study data to show that postcommunist economic failure is the outcome of too close adherence to liberal policy recommendations, which has led to an erosion of state effectiveness, and thus produced poor economic performance. The present paper advances a version of this statist theory based on a quantitative analysis of mass privatization programs in the postcommunist world. We argue that rapid large-scale privatization creates severe supply and demand shocks for enterprises, thereby inducing firm failure. The resulting erosion of tax revenues leads to a fiscal crisis for the state, and severely weakens its capacity and bureaucratic character. This, in turn, reacts back on the enterprise sector, as the state can no longer support the institutions necessary for the effective functioning of a modern economy, thus resulting in deindustrialization. Using cross-national regression techniques we find that the implementation of mass privatization programs negatively impacts measures of economic growth, state capacity and the security of property rights.http://deepblue.lib.umich.edu/bitstream/2027.42/40192/3/wp806.pd
- …