187 research outputs found

    Large deviations in the alternating mass harmonic chain

    Full text link
    We extend the work of Kannan et al. and derive the cumulant generating function for the alternating mass harmonic chain consisting of N particles and driven by heat reservoirs. The main result is a closed expression for the cumulant generating function in the thermodynamic large N limit. This expression is independent of N but depends on whether the chain consists of an even or an odd number of particles, in accordance with the results obtained by Kannan el al. for the heat current. This result is in accordance with the absence of local thermodynamic equilibrium in a linear system.Comment: 19 pages latex, 6 figures, final version, appeared in J. Phys. A: Math. Theor 47, 325003 (2014

    Morphology and scaling in the noisy Burgers equation: Soliton approach to the strong coupling fixed point

    Full text link
    The morphology and scaling properties of the noisy Burgers equation in one dimension are treated by means of a nonlinear soliton approach based on the Martin-Siggia-Rose technique. In a canonical formulation the strong coupling fixed point is accessed by means of a principle of least action in the asymptotic nonperturbative weak noise limit. The strong coupling scaling behaviour and the growth morphology are described by a gas of nonlinear soliton modes with a gapless dispersion law and a superposed gas of linear diffusive modes with a gap. The dynamic exponent is determined by the gapless soliton dispersion law, whereas the roughness exponent and a heuristic expression for the scaling function are given by the form factor in a spectral representation of the interface slope correlation function. The scaling function has the form of a Levy flight distribution.Comment: 5 pages, Revtex file, submitted to Phys. Rev. Let

    Heat fluctuations and fluctuation theorems in the case of multiple reservoirs

    Full text link
    We consider heat fluctuations and fluctuation theorems for systems driven by multiple reservoirs. We establish a fundamental symmetry obeyed by the joint probability distribution for the heat transfers and system coordinates. The symmetry leads to a generalisation of the asymptotic fluctuation theorem for large deviations at large times. As a result the presence of multiple reservoirs influence the tails in the heat distribution. The symmetry, moreover, allows for a simple derivation of a recent exact fluctuation theorem valid at all times. Including a time dependent work protocol we also present a derivation of the integral fluctuation theorem.Comment: 27 pages, 1 figure, new extended version, to appear in J. Stat. Mech, (2014

    Towards a strong coupling theory for the KPZ equation

    Full text link
    After a brief introduction we review the nonperturbative weak noise approach to the KPZ equation in one dimension. We argue that the strong coupling aspects of the KPZ equation are related to the existence of localized propagating domain walls or solitons representing the growth modes; the statistical weight of the excitations is governed by a dynamical action representing the generalization of the Boltzmann factor to kinetics. This picture is not limited to one dimension. We thus attempt a generalization to higher dimensions where the strong coupling aspects presumably are associated with a cellular network of domain walls. Based on this picture we present arguments for the Wolf-Kertez expression z= (2d+1)/(d+1) for the dynamical exponent.Comment: 10 pages, 4 figures, "Horizons in Complex Systems", Messina, December 2001 (H. E. Stanley, 60th birthday

    Energetics and efficiency of a molecular motor model

    Full text link
    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor is addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10 pct in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action.Comment: 23 pages, 6 figures, final version, appeared in J. Stat. Mech. P12001 (2013

    Nonequilibrium dynamics of a growing interface

    Full text link
    A growing interface subject to noise is described by the Kardar-Parisi-Zhang equation or, equivalently, the noisy Burgers equation. In one dimension this equation is analyzed by means of a weak noise canonical phase space approach applied to the associated Fokker-Planck equation. The growth morphology is characterized by a gas of nonlinear soliton modes with superimposed linear diffusive modes. We also discuss the ensuing scaling properties.Comment: 14 pages, 11 figures, conference proceeding; a few corrections have been adde

    Bound particle coupled to two thermostats

    Full text link
    We consider a harmonically bound Brownian particle coupled to two distinct heat reservoirs at different temperatures. We show that the presence of a harmonic trap does not change the large deviation function from the case of a free Brownian particle discussed by Derrida and Brunet and Visco. Likewise, the Gallavotti-Cohen fluctuation theorem related to the entropy production at the heat sources remains in force. We support the analytical results with numerical simulations

    Scaling function for the noisy Burgers equation in the soliton approximation

    Full text link
    We derive the scaling function for the one dimensional noisy Burgers equation in the two-soliton approximation within the weak noise canonical phase space approach. The result is in agreement with an earlier heuristic expression and exhibits the correct scaling properties. The calculation presents the first step in a many body treatment of the correlations in the Burgers equation.Comment: Replacement: Several corrections, 4 pages, Revtex file, 3 figures. To appear in Europhysics Letter

    Solitons in the noisy Burgers equation

    Full text link
    We investigate numerically the coupled diffusion-advective type field equations originating from the canonical phase space approach to the noisy Burgers equation or the equivalent Kardar-Parisi-Zhang equation in one spatial dimension. The equations support stable right hand and left hand solitons and in the low viscosity limit a long-lived soliton pair excitation. We find that two identical pair excitations scatter transparently subject to a size dependent phase shift and that identical solitons scatter on a static soliton transparently without a phase shift. The soliton pair excitation and the scattering configurations are interpreted in terms of growing step and nucleation events in the interface growth profile. In the asymmetrical case the soliton scattering modes are unstable presumably toward multi soliton production and extended diffusive modes, signalling the general non-integrability of the coupled field equations. Finally, we have shown that growing steps perform anomalous random walk with dynamic exponent z=3/2 and that the nucleation of a tip is stochastically suppressed with respect to plateau formation.Comment: 11 pages Revtex file, including 15 postscript-figure
    • …
    corecore