16,407 research outputs found
Evidence of radius inflation in stars approaching the slow-rotator sequence
Average stellar radii in open clusters can be estimated from rotation periods
and projected rotational velocities under the assumption of random orientation
of the spin axis. Such estimates are independent of distance, interstellar
absorption, and models, but their validity can be limited by missing data
(truncation) or data that only represent upper/lower limits (censoring). We
present a new statistical analysis method to estimate average stellar radii in
the presence of censoring and truncation. We use theoretical distribution
functions of the projected stellar radius to define a likelihood
function in the presence of censoring and truncation. Average stellar radii in
magnitude bins are then obtained by a maximum likelihood parametric estimation
procedure. This method is capable of recovering the average stellar radius
within a few percent with as few as 10 measurements. Here it is
applied for the first time to the dataset available for the Pleiades. We find
an agreement better than 10 percent between the observed vs
relationship and current standard stellar models for 1.2
0.85 with no evident bias. Evidence of a systematic deviation at
level are found for stars with 0.8 0.6 approaching the
slow-rotator sequence. Fast-rotators ( < 2 d) agree with standard models
within 15 percent with no systematic deviations in the whole 1.2 0.5 range. The evidence found of a possible radius inflation
just below the lower mass limit of the slow-rotator sequence indicates a
possible connection with the transition from the fast to the slow-rotator
sequence.Comment: Accepted by Astronomy and Astrophysics, 11 pages, 6 figure
Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression
Infrared femtosecond laser pulses are important tools both in strong-field
physics, driving X-ray high-harmonic generation, and as the basis for widely
tuneable, if inefficient, ultrafast sources in the visible and ultraviolet.
Although anomalous material dispersion simplifies compression to few-cycle
pulses, attosecond pulses in the infrared have remained out of reach. We
demonstrate soliton self-compression of 1800 nm laser pulses in hollow
capillary fibers to sub-cycle envelope duration (2 fs) with 27 GW peak power,
corresponding to attosecond field transients. In the same system, we generate
wavelength-tuneable few-femtosecond pulses from the ultraviolet (300 nm) to the
infrared (740 nm) with energy up to 25 J and efficiency up to 12 %, and
experimentally characterize the generation dynamics in the time-frequency
domain. A compact second stage generates multi-J pulses from 210 nm to 700
nm using less than 200 J of input energy. Our results significantly expand
the toolkit available to ultrafast science.Comment: 8 pages, 5 figure
Scalar-tensor theories, trace anomalies and the QCD-frame
We consider the quantum effects of matter fields in scalar-tensor theories
and clarify the role of trace anomaly when switching between conformally
related `frames'. We exploit the property that the couplings between the scalar
and the gauge fields are not frame-invariant in order to define a `QCD-frame',
where the scalar is not coupled to the gluons. We show that this frame is a
natural generalization of the `Jordan frame' in the case of non-metric theories
and that it is particularly convenient for gravitational phenomenology: test
bodies have trajectories that are as close as possible to geodesics with
respect to such a metric and equivalence principle violations are directly
proportional to the scalar coupling parameters written in this frame. We show
how RG flow and decoupling work in metric and non-metric theories. RG-running
commutes with the operation of switching between frames at different scales.
When only matter loops are considered, our analysis confirms that metricity is
stable under radiative corrections and shows that approximate metricity is
natural in a technical sense.Comment: 10 pages. Minor changes to the main text, appendix added. To appear
on PR
Accelerated Asymptotics for Diffusion Model Estimation
We propose a semiparametric estimation procedure for scalar homogeneous stochastic differential equations. We specify a parametric class for the underlying diffusion process and identify the parameters of interest by minimizing criteria given by the integrated squared difference between kernel estimates of drift and diffusion function and their parametric counterparts. The nonparametric estimates are simplified versions of those in Bandi and Phillips (1998). A complete asymptotic theory for the semiparametric estimates is developed. The limit theory relies on infill and long span asymptotics and the asymptotic distributions are shown to depend on the chronological local time of the underlying diffusion process. The estimation method and asymptotic results apply to both stationary and nonstationary processes. As is standard with semiparametric approaches in other contexts, faster convergence rates are attained than is possible in the fully functional case. From a purely technical point of view, this work merges two strands of the most recent econometrics literature, namely the estimation of nonlinear models of integrated time-series [Park and Phillips (1999, 2000)] and the functional identification of diffusions under minimal assumptions on the dynamics of the underlying process [Florens-Zmirou (1993), Jacod (1997), Bandi and Phillips (1998) and Bandi (1999)]. In effect, the 'minimum distance' type of estimation that is presented in this paper can be interpreted as extremum estimation for potentially nonstationary and nonlinear continuous-time models.
A complete family of separability criteria
We introduce a new family of separability criteria that are based on the
existence of extensions of a bipartite quantum state to a larger number
of parties satisfying certain symmetry properties. It can be easily shown that
all separable states have the required extensions, so the non-existence of such
an extension for a particular state implies that the state is entangled. One of
the main advantages of this approach is that searching for the extension can be
cast as a convex optimization problem known as a semidefinite program (SDP).
Whenever an extension does not exist, the dual optimization constructs an
explicit entanglement witness for the particular state. These separability
tests can be ordered in a hierarchical structure whose first step corresponds
to the well-known Positive Partial Transpose (Peres-Horodecki) criterion, and
each test in the hierarchy is at least as powerful as the preceding one. This
hierarchy is complete, in the sense that any entangled state is guaranteed to
fail a test at some finite point in the hierarchy, thus showing it is
entangled. The entanglement witnesses corresponding to each step of the
hierarchy have well-defined and very interesting algebraic properties that in
turn allow for a characterization of the interior of the set of positive maps.
Coupled with some recent results on the computational complexity of the
separability problem, which has been shown to be NP-hard, this hierarchy of
tests gives a complete and also computationally and theoretically appealing
characterization of mixed bipartite entangled states.Comment: 21 pages. Expanded introduction. References added, typos corrected.
Accepted for publication in Physical Review
High-energy ultraviolet dispersive-wave emission in compact hollow capillary systems
We demonstrate high-energy resonant dispersive-wave emission in the deep
ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34cm) hollow
capillary fibres. This down-scaling in length compared to previous results in
capillaries is achieved by using small core diameters (100 and 150 m) and
pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to
6 J across the deep ultraviolet in a 100 m capillary and up to 11
J in a 150 m capillary. From comparisons to simulations we estimate
the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study
the influence of pump duration on the bandwidth of the dispersive wave.Comment: 5 pages, 3 figure
Post-Privatization Renegotiation and Disputes in Chile
Over the last decade, Chile has undertaken remarkable reforms and transferred publicly owned utilities to the private sector either by selling the assets or through concession agreements. Because of the reforms the country has been able to attract private participation in the provision of public services like energy, transportation, telecommunications, potable water and sewage. In this paper, the authors analyze a series of post-privatization disputes and renegotiations that have taken place in Chile since the late 1980s in the electricity sector. This sector was chosen because the privatization process was, to a large extent, completed a decade ago, providing enough time to properly evaluate negotiations and disputes. The paper also assesses how lessons learned in the reform of electricity were internalized in the design of the regulatory framework for other concessions.Public Utilities, Electricity, Private Sector, IFM-116, electricity sector, dispute renegotiation, Chile, infrastructure, privatization
- …