9,649 research outputs found
A direct kinematical derivation of the relativistic Sagnac effect for light or matter beams
The Sagnac time delay and the corresponding Sagnac phase shift, for
relativistic matter and electromagnetic beams counter-propagating in a rotating
interferometer, are deduced on the ground of relativistic kinematics. This
purely kinematical approach allows to explain the ''universality'' of the
effect, namely the fact that the Sagnac time difference does not depend on the
physical nature of the interfering beams. The only prime requirement is that
the counter-propagating beams have the same velocity with respect to any
Einstein synchronized local co-moving inertial frame.Comment: 10 pages, 1 EPS figure, to appear in General Relativity and
Gravitatio
Cladribine Tablets Mode of Action, Learning from the Pandemic: A Narrative Review
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, characterized by chronic, inflammatory, demyelinating, and neurodegenerative processes. MS management relies on disease-modifying drugs that suppress/modulate the immune system. Cladribine tablets (CladT) have been approved by different health authorities for patients with various forms of relapsing MS. The drug has been demonstrated to deplete CD4+ and CD8+ T-cells, with a higher effect described in the former, and to decrease total CD19+, CD20+, and naive B-cell counts. COVID-19 is expected to become endemic, suggesting its potential infection risk for immuno-compromised patients, including MS patients treated with disease-modifying drugs. We report here the available data on disease-modifying drug-treated-MS patients and COVID-19 infection and vaccination, with a focus on CladT. MS patients treated with CladT are not at higher risk of developing severe COVID-19. While anti-SARS-CoV-2 vaccination is recommended in all MS patients with guidelines addressing vaccination timing according to the different disease-modifying drugs, no vaccination timing restrictions seem to be necessary for cladribine, based on its mechanism of action and available evidence. Published data suggest that CladT treatment does not impact the production of anti-SARS-CoV-2 antibodies after COVID-19 vaccination, possibly due to its relative sparing effect on naĂŻve B-cells and the rapid B-cell reconstitution following treatment. Slightly lower specific T-cell responses are likely not impacting the risk of breakthrough COVID-19. It could be stated that cladribineâs transient effect on innate immune cells likely contributes to maintaining an adequate first line of defense against the SARS-CoV-2 virus
Synchronization Gauges and the Principles of Special Relativity
The axiomatic bases of Special Relativity Theory (SRT) are thoroughly
re-examined from an operational point of view, with particular emphasis on the
status of Einstein synchronization in the light of the possibility of arbitrary
synchronization procedures in inertial reference frames. Once correctly and
explicitly phrased, the principles of SRT allow for a wide range of `theories'
that differ from the standard SRT only for the difference in the chosen
synchronization procedures, but are wholly equivalent to SRT in predicting
empirical facts. This results in the introduction, in the full background of
SRT, of a suitable synchronization gauge. A complete hierarchy of
synchronization gauges is introduced and elucidated, ranging from the useful
Selleri synchronization gauge (which should lead, according to Selleri, to a
multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl
synchronization gauge and, finally, to the even more general
Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all
these gauges do not challenge the SRT, as claimed by Selleri, but simply lead
to a number of formalisms which leave the geometrical structure of Minkowski
spacetime unchanged. Several aspects of fundamental and applied interest
related to the conventional aspect of the synchronization choice are discussed,
encompassing the issue of the one-way velocity of light on inertial and
rotating reference frames, the GPS's working, and the recasting of Maxwell
equations in generic synchronizations. Finally, it is showed how the gauge
freedom introduced in SRT can be exploited in order to give a clear explanation
of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of
Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
Locality hypothesis and the speed of light
The locality hypothesis is generally considered necessary for the study of
the kinematics of non-inertial systems in special relativity. In this paper we
discuss this hypothesis, showing the necessity of an improvement, in order to
get a more clear understanding of the various concepts involved, like
coordinate velocity and standard velocity of light. Concrete examples are
shown, where these concepts are discussed.Comment: 23 page
Reference frames and rigid motions in relativity: Applications
The concept of rigid reference frame and of constricted spatial metric, given
in the previous work [\emph{Class. Quantum Grav.} {\bf 21}, 3067,(2004)] are
here applied to some specific space-times: In particular, the rigid rotating
disc with constant angular velocity in Minkowski space-time is analyzed, a new
approach to the Ehrenfest paradox is given as well as a new explanation of the
Sagnac effect. Finally the anisotropy of the speed of light and its measurable
consequences in a reference frame co-moving with the Earth are discussed.Comment: 13 pages, 1 figur
The Sagnac Phase Shift suggested by the Aharonov-Bohm effect for relativistic matter beams
The phase shift due to the Sagnac Effect, for relativistic matter beams
counter-propagating in a rotating interferometer, is deduced on the bases of a
a formal analogy with the the Aharonov-Bohm effect. A procedure outlined by
Sakurai, in which non relativistic quantum mechanics and newtonian physics
appear together with some intrinsically relativistic elements, is generalized
to a fully relativistic context, using the Cattaneo's splitting technique. This
approach leads to an exact derivation, in a self-consistently relativistic way,
of the Sagnac effect. Sakurai's result is recovered in the first order
approximation.Comment: 18 pages, LaTeX, 2 EPS figures. To appear in General Relativity and
Gravitatio
S. aureus and IgE-mediated diseases: pilot or copilot? A narrative review
Introduction: S. aureus is a major opportunistic pathogen that has been implicated in the pathogenesis of several chronic inflammatory diseases including bronchial asthma, chronic rhinosinusitis with nasal polyps (CRSwNP), chronic spontaneous urticaria (CSU), and atopic dermatitis. S. aureus can induce the production of both polyclonal and specific IgE that can elicit an inflammatory cascade.
Areas covered: The link between the sensitization to S. aureus enterotoxins and the severity of several chronic inflammatory diseases is reviewed in detail, as well as its therapeutic implications.
Expert opinion: An anti-IgE strategy to inhibit S. aureus enterotoxins would be a valid approach to treat several endotypes of severe asthma, CRSwNP and CSU in which IgE against S. aureus enterotoxins should represent, not only a marker of severity of the diseases but also a target of a treatment
The down-regulation of clusterin expression enhances the αsynuclein aggregation process
Parkinsonâs Disease (PD) is a progressive neurodegenerative disease characterized by the presence of proteinaceous aggregates of αSynuclein (αSyn) in the dopaminergic neurons. Chaperones are key components of the proteostasis network that are able to counteract αSynâs aggregation, as well as its toxic effects. Clusterin (CLU), a molecular chaperone, was consistently found to interfere with AÎČ aggregation in Alzheimerâs Disease (AD). However, its role in PD pathogenesis has yet to be extensively investigated. In this study, we assessed the involvement of CLU in the αSyn aggregation process by using SH-SY5Y cells stably overexpressing αSyn (SH-Syn). First, we showed that αSyn overexpression caused a strong increase in CLU expression without affecting levels of Hsp27, Hsp70, and Hsp90, which are the chaperones widely recognized to counteract αSyn burden. Then, we demonstrated that αSyn aggregation, induced by proteasome inhibition, determines a strong increase of CLU in insoluble aggregates. Remarkably, we revealed that CLU down-regulation results in an increase of αSyn aggregates in SH-Syn without significantly affecting cell viability and the Unfolded Protein Response (UPR). Furthermore, we demonstrated the direct molecular interaction between CLU and αSyn via a co-immunoprecipitation (co-IP) assay. All together, these findings provide incontrovertible evidence that CLU is an important player in the response orchestrated by the cell to cope with αSyn burden
- âŠ