13,268 research outputs found
Evolutionary quantum game
We present the first study of a dynamical quantum game. Each agent has a
`memory' of her performance over the previous m timesteps, and her strategy can
evolve in time. The game exhibits distinct regimes of optimality. For small m
the classical game performs better, while for intermediate m the relative
performance depends on whether the source of qubits is `corrupt'. For large m,
the quantum players dramatically outperform the classical players by `freezing'
the game into high-performing attractors in which evolution ceases.Comment: 4 pages in two-column format. 4 figure
Improved detection of small atom numbers through image processing
We demonstrate improved detection of small trapped atomic ensembles through
advanced post-processing and optimal analysis of absorption images. A fringe
removal algorithm reduces imaging noise to the fundamental photon-shot-noise
level and proves beneficial even in the absence of fringes. A
maximum-likelihood estimator is then derived for optimal atom-number estimation
and is applied to real experimental data to measure the population differences
and intrinsic atom shot-noise between spatially separated ensembles each
comprising between 10 and 2000 atoms. The combined techniques improve our
signal-to-noise by a factor of 3, to a minimum resolvable population difference
of 17 atoms, close to our ultimate detection limit.Comment: 4 pages, 3 figure
Hadamard States and Adiabatic Vacua
Reversing a slight detrimental effect of the mailer related to TeXabilityComment: 10pages, LaTeX (RevTeX-preprint style
Manned Mars landing missions using electric propulsion
Manned Mars landing missions using electric propulsion - evaluation of various mission profile
Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity -- temperature relation
The physical processes that define the spine of the galaxy cluster X-ray
luminosity -- temperature (L-T) relation are investigated using a large
hydrodynamical simulation of the Universe. This simulation models the same
volume and phases as the Millennium Simulation and has a linear extent of 500
h^{-1} Mpc. We demonstrate that mergers typically boost a cluster along but
also slightly below the L-T relation. Due to this boost we expect that all of
the very brightest clusters will be near the peak of a merger. Objects from
near the top of the L-T relation tend to have assembled much of their mass
earlier than an average halo of similar final mass. Conversely, objects from
the bottom of the relation are often experiencing an ongoing or recent merger.Comment: 8 pages, 7 figures, submitted to MNRA
Wetting and Minimal Surfaces
We study minimal surfaces which arise in wetting and capillarity phenomena.
Using conformal coordinates, we reduce the problem to a set of coupled boundary
equations for the contact line of the fluid surface, and then derive simple
diagrammatic rules to calculate the non-linear corrections to the Joanny-de
Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all
geometric length scales of the fluid container decouple from the
short-wavelength deformations of the contact line. This is illustrated by a
calculation of the linearized interaction between contact lines on two opposite
parallel walls. We present a simple algorithm to compute the minimal surface
and its energy based on these ideas. We also point out the intriguing
singularities that arise in the Legendre transformation from the pure Dirichlet
to the mixed Dirichlet-Neumann problem.Comment: 22 page
Atomic Bloch-Zener oscillations for sensitive force measurements in a cavity
Cold atoms in an optical lattice execute Bloch-Zener oscillations when they
are accelerated. We have performed a theoretical investigation into the case
when the optical lattice is the intra-cavity field of a driven Fabry-Perot
resonator. When the atoms oscillate inside the resonator, we find that their
back-action modulates the phase and intensity of the light transmitted through
the cavity. We solve the coupled atom-light equations self-consistently and
show that, remarkably, the Bloch period is unaffected by this back-action. The
transmitted light provides a way to observe the oscillation continuously,
allowing high precision measurements to be made with a small cloud of atoms.Comment: 5 pages, 2 figures. Updated version including cavity heating effect
Evaluation of bistable systems versus matched filters in detecting bipolar pulse signals
This paper presents a thorough evaluation of a bistable system versus a
matched filter in detecting bipolar pulse signals. The detectability of the
bistable system can be optimized by adding noise, i.e. the stochastic resonance
(SR) phenomenon. This SR effect is also demonstrated by approximate statistical
detection theory of the bistable system and corresponding numerical
simulations. Furthermore, the performance comparison results between the
bistable system and the matched filter show that (a) the bistable system is
more robust than the matched filter in detecting signals with disturbed pulse
rates, and (b) the bistable system approaches the performance of the matched
filter in detecting unknown arrival times of received signals, with an
especially better computational efficiency. These significant results verify
the potential applicability of the bistable system in signal detection field.Comment: 15 pages, 9 figures, MikTex v2.
Spectropolarimetry of the Luminous Narrow-Line Seyfert Galaxies IRAS 20181-2244 and IRAS 13224-3809
We observed the narrow-line Seyfert 1 galaxies IRAS 20181-2244 and IRAS
13324-3809 with a new spectropolarimeter on the RC spectrograph at the CTIO 4m
telescope. Previously it had been suggested that IRAS 20181-2244 was a Type 2
QSO and thus might contain an obscured broad-line region which could be
detected by the presence of broad Balmer lines in the polarized flux. We found
the object to be polarized at about 2%, and constant with wavelength, (unlike
most narrow-line Seyfert 1s), but with no evidence of broad Balmer lines in
polarized flux. The spectropolarimetry indicates that the scattering material
is inside the BLR. IRAS 13224-3809, notable for its high variability in X-ray
and UV wavelengths, has a low polarization consistent with a Galactic
interstellar origin.Comment: 19 pages using (AASTEX) aaspp4.sty and 5 postscript figures To be
published in the Astrophysical Journa
- …