9,174 research outputs found

    Autoignition test cell Patent

    Get PDF
    Test chamber for determining decomposition and autoignition of materials used in spacecraft under controlled environmental condition

    Model-free reconstruction of magnetic correlations in frustrated magnets

    Full text link
    Frustrated magnetic systems exhibit extraordinary physical properties but quantification of their magnetic correlations poses a serious challenge to experiment and theory. Current insight into frustrated magnetic correlations relies on modelling techniques such as reverse Monte Carlo methods, which require knowledge about the exact ordered atomic structure. Here we present a method for direct reconstruction of magnetic correlations in frustrated magnets by three-dimensional difference pair distribution function analysis of neutron total scattering data. The methodology is applied to the disordered frustrated magnet bixbyite, (Mn1-xFex)2O3, which reveals nearest-neighbor antiferromagnetic correlations for the metal sites up to a range of approximately 15 {\AA}. Importantly, this technique allows for magnetic correlations to be determined directly from the experimental data without any assumption about the atomic structure

    Unusual Phase Transitions and Magnetoelastic Coupling in TlFe1.6Se2 Single Crystals

    Full text link
    Structural, magnetic, electrical transport, and heat capacity data are reported for single crystals of TlFe1.6Se2. This compound crystallizes in a tetragonal structure similar to the ThCr2Si2 structure, but with vacancies in the Fe layer. The vacancies can be ordered or disordered depending on temperature and thermal history. If the vacancies are ordered, the basal plane lattice constant increases from a to \sqrt{5}a. Antiferromagnetic order with the Fe spins along the c-axis occurs below T_N ~ 430K as shown by single crystal neutron diffraction and the magnetic structure is reported. In addition, for the vacancy ordered crystal, two other phase transitions are found at T_1 ~ 140K, and T_2 ~ 100K. The phase transitions at T_1 and T_2 are evident in heat capacity, magnetic susceptibility, resistivity data, a and c lattice parameters, and in the unusual temperature dependence of the magnetic order parameter determined from neutron scattering. The phase transitions at T_1 and T_2 result in significant changes in the magnetic moment per iron, with 1.72(6)\mu_B observed at 300K, 2.07(9)\mu_B at 140\,K, 1.90(9)\,\mu_B at 115\,K, and 1.31(8)\mu_B for 5\,K if the same "block checkerboard" magnetic structure is used at all temperatures. The phase transitions appear to be driven by small changes in the c lattice constant, large magnetoelastic coupling, and the localization of carriers with decreasing temperature.Comment: Accepted for publication in Physical Review

    Explaining the entropy excess in clusters and groups of galaxies without additional heating

    Get PDF
    The X-ray luminosity and temperature of clusters and groups of galaxies do not scale in a self-similar manner. This has often been interpreted as a sign that the intracluster medium has been substantially heated by non-gravitational sources. In this paper, we propose a simple model which, instead, uses the properties of galaxy formation to explain the observations. Drawing on available observations, we show that there is evidence that the efficiency of galaxy formation was higher in groups than in clusters. If confirmed, this would deplete the low-entropy gas in groups, increase their central entropy and decrease their X-ray luminosity. A simple, empirical, hydrostatic model appears to match both the luminosity-temperature relation of clusters and properties of their internal structure as well.Comment: 5 pages, 4 figures, accepted in ApJL; added one reference, otherwise unchange

    Vortices in Thin, Compressible, Unmagnetized Disks

    Full text link
    We consider the formation and evolution of vortices in a hydrodynamic shearing-sheet model. The evolution is done numerically using a version of the ZEUS code. Consistent with earlier results, an injected vorticity field evolves into a set of long-lived vortices, each of which has a radial extent comparable to the local scale height. But we also find that the resulting velocity field has a positive shear stress, . This effect appears only at high resolution. The transport, which decays with time as t^-1/2, arises primarily because the vortices drive compressive motions. This result suggests a possible mechanism for angular momentum transport in low-ionization disks, with two important caveats: a mechanism must be found to inject vorticity into the disk, and the vortices must not decay rapidly due to three-dimensional instabilities.Comment: 8 pages, 10 figures (high resolution figures available in ApJ electronic edition

    Use of ERTS-1 data: Summary report of work on ten tasks

    Get PDF
    The author has identified the following significant results. Depth mapping's for a portion of Lake Michigan and at the Little Bahama Bank test site have been verified by use of navigation charts and on-site visits. A thirteen category recognition map of Yellowstone Park has been prepared. Model calculation of atmospheric effects for various altitudes have been prepared. Radar, SLAR, and ERTS-1 data for flooded areas of Monroe County, Michigan are being studied. Water bodies can be reliably recognized and mapped using maximum likelihood processing of ERTS-1 digital data. Wetland mapping has been accomplished by slicing of single band and/or ratio processing of two bands for a single observation date. Both analog and digital processing have been used to map the Lake Ontario basin using ERTS-1 data. Operating characteristic curves were developed for the proportion estimation algorithm to determine its performance in the measurement of surface water area. The signal in band MSS-5 was related to sediment content of waters by modelling approach and by relating surface measurements of water to processed ERTS data. Radiance anomalies in ERTS-1 data could be associated with the presence of oil on water in San Francisco Bay, but the anomalies were of the same order as those caused by variations in sediment concentration and tidal flushing

    Spin reorientation in TlFe1.6Se2 with complete vacancy ordering

    Full text link
    The relationship between vacancy ordering and magnetism in TlFe1.6Se2 has been investigated via single crystal neutron diffraction, nuclear forward scattering, and transmission electron microscopy. The examination of chemically and structurally homogenous crystals allows the true ground state to be revealed, which is characterized by Fe moments lying in the ab-plane below 100K. This is in sharp contrast to crystals containing regions of order and disorder, where a competition between c-axis and ab-plane orientations of the moments is observed. The properties of partially-disordered TlFe1.6Se2 are therefore not associated with solely the ordered or disordered regions. This contrasts the viewpoint that phase separation results in independent physical properties in intercalated iron selenides, suggesting a coupling between ordered and disordered regions may play an important role in the superconducting analogues.Comment: Minor changes; updated references and funding acknowledgemen
    corecore