727 research outputs found

    A Sensitive Moving-Coil Galvanometer

    Get PDF
    n/

    Spatial and Temporal Variability in Seepage between a Contaminated Aquifer and Tributaries to the Ohio River

    Get PDF
    Because interactions between ground water and tributaries may influence contaminant loading to rivers, we delineated seepage along Little Bayou and Bayou Creeks in McCracken County, Kentucky, during a two-year period. From the Paducah Gaseous Diffusion Plant, on the divide between the creeks, trichloroethene and technetium-99 plumes extend several km toward the Ohio River. Gaining conditions occur where the creeks are incised into coarse sediments in the river\u27s flood plain. Such conditions were marked by upward hydraulic gradients within the bed; maximum specific discharge (q) \u3e 0.24 m d-1; relatively narrow ranges of stream, piezometer, and bed temperatures; relatively cool bed and bank temperatures in summer and early autumn; detections of trace solutes in stream water; and observations of springs, boils, and seeps. Evidence of losing or no-net-discharge conditions included downward or lateral hydraulic gradients; minimal q values (indicative of stream-water flow through the bed); and relatively broad annual ranges of stream and piezometer temperatures. Mixing calculations using δ18O and Cl- support inferences about gaining and losing reaches. Seepage rates and directions changed during dry periods in summer and early autumn and following Ohio River flooding in spring. Discharge of uncontaminated ground water dilutes contaminants in Little Bayou Creek

    Influences of physical oceanographic processes on chlorophyll distributions in coastal and estuarine waters of the South Atlantic Bight

    Get PDF
    Coastal and estuarine waters of the South Atlantic Bight are highly productive, with primary production of 600-700 gC/m2/y. While controls and fate of this production are conceptually well understood, the importance of meteorology and physical circulation processes on phytoplankton has not received equivalent attention. Here, we describe the effects of wind stress and tidal currents on temporal and spatial distributions of phytoplankton biomass represented as chlorophyll a (chl a). Moored instruments were deployed and shipboard sampling was conducted in the North Edisto estuary (South Carolina) and adjacent inner shelf waters during four, two-week field studies in May and August 1993, and June and September 1994. Local wind regimes induced upwelling- and downwelling-favorable conditions which strengthened or reduced vertical density stratification in the coastal frontal zone, respectively, and shifted the location of the front. Chl a in shelf waters was more or less homogenous independent of the wind regime, while chl a on the estuary delta was generally vertically stratified. Within the estuary, chl a concentrations were positively correlated with the alongshore component of wind stress; chl a was not correlated with the weaker cross-shelf component of wind stress. Highest chl a occurred during strong downwelling-favorable events. The quick response time to wind forcing (6-12 hrs) implied a direct effect on chl a distributions and not a stimulation of growth processes. The source of the elevated chl a in response to wind forcing was apparently resuspension of settled and epibenthic algal cells. Tidal currents also influenced the vertical distribution and concentration of chl a. Time series sampling on the estuary delta showed that, with increasing velocity of ebb and flood tide currents, the relative contributions of pennate and centric diatoms with attached detritus and sand grains also increased, indicating that tidal resuspension of settled and epibenthic microalgae also occurred. Vertical stratification of chl a (highest concentrations near the bottom) began to degrade upon mixing by tidal currents with velocities as low as 10 cm/sec. Homogenization of 5-7 m water columns was fully achieved at velocities of 20-30 cm/sec. The data document the direct and comparatively immediate (timescales of minuteshours) impact of tidal and wind energy on concentrations and distribution patterns of phytoplankton in coastal and estuarine waters of the South Atlantic Bight

    Quantum process tomography of two-qubit controlled-Z and controlled-NOT gates using superconducting phase qubits

    Full text link
    We experimentally demonstrate quantum process tomography of controlled-Z and controlled-NOT gates using capacitively-coupled superconducting phase qubits. These gates are realized by using the ∣2⟩|2\rangle state of the phase qubit. We obtain a process fidelity of 0.70 for the controlled-phase and 0.56 for the controlled-NOT gate, with the loss of fidelity mostly due to single-qubit decoherence. The controlled-Z gate is also used to demonstrate a two-qubit Deutsch-Jozsa algorithm with a single function query.Comment: 10 pages, 8 figures, including supplementary informatio
    • …
    corecore