26,189 research outputs found

    Probing Gluon Saturation through Dihadron Correlations at an Electron-Ion Collider

    Full text link
    Two-particle azimuthal angle correlations have been proposed to be one of the most direct and sensitive probes to access the underlying gluon dynamics involved in hard scatterings. In anticipation of an Electron-Ion Collider (EIC), detailed studies of dihadron correlation measurements in electron-proton and electron-ion collisions at an EIC have been performed. The impact of such measurements on the understanding of the different gluon distribution functions, as a clean signature for gluon saturation and to constrain saturation models further, has been explored. It is shown that dihadron correlation measurements will be one of the key methods to probe gluon saturation phenomena at a future EIC.Comment: 13 pages, 13 eps figure

    Initial and Final State Interaction Effects in Small-x Quark Distributions

    Full text link
    We study the initial and final state interaction effects in the transverse momentum dependent parton distributions in the small-xx saturation region. In particular, we discuss the quark distributions in the semi-inclusive deep inelastic scattering, Drell-Yan lepton pair production and dijet-correlation processes in pApA collisions. We calculate the quark distributions in the scalar-QED model and then extend to the color glass condensate formalism in QCD. The quark distributions are found universal between the DIS and Drell-Yan processes. On the other hand, the quark distribution from the qq′→qq′qq'\to qq' channel contribution to the dijet-correlation process is not universal. However, we find that it can be related to the quark distribution in DIS process by a convolution with the normalized unintegrated gluon distribution in the color glass condensate formalism in the large NcN_c limit.Comment: 20 pages, 6 figure

    Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking

    Full text link
    A strategy is proposed to realize robust transport in time reversal invariant photonic system. Using numerical simulation and microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric woodpile photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.Comment: 16 pages, 5 figure

    Binding Transition in Quantum Hall Edge States

    Get PDF
    We study a class of Abelian quantum Hall (QH) states which are topologically unstable (T-unstable). We find that the T-unstable QH states can have a phase transition on the edge which causes a binding between electrons and reduces the number of gapless edge branches. After the binding transition, the single-electron tunneling into the edge gains a finite energy gap, and only certain multi-electron co-tunneling (such as three-electron co-tunneling for ν=9/5\nu=9/5 edges) can be gapless. Similar phenomenon also appear for edge state on the boundary between certain QH states. For example edge on the boundary between ν=2\nu=2 and ν=1/5\nu=1/5 states only allow three-electron co-tunneling at low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur

    Landau-Zener Interference in Multilevel Superconducting Flux Qubits Driven by Large Amplitude Fields

    Full text link
    We proposed an analytical model to analyze the Landau-Zener interference in a multilevel superconducting flux qubit driven by large amplitude external fields. Our analytical results agree remarkably with those of the experiment [Nature 455, 51 (2008)]. Moreover, we studied the effect of driving-frequency and dephasing rate on the interference. The dephasing generally destroys the interference while increasing frequency rebuilds the interference at large dephasing rate. At certain driving frequency and dephasing rate, the interference shows some anomalous features as observed in recent experiments.Comment: 7 pages, 6 figure

    Modified Bennett-Brassard 1984 Quantum Key Distribution With Two-way Classical Communications

    Full text link
    The quantum key distribution protocol without public announcement of bases is equipped with a two-way classical communication symmetric entanglement purification protocol. This modified key distribution protocol is unconditionally secure and has a higher tolerable error rate of 20%, which is higher than previous scheme without public announcement of bases.Comment: 5 pages. To appear in Physical Review

    Non-equilibrium tunneling into general quantum Hall edge states

    Full text link
    In this paper we formulate the theory of tunneling into general Abelian fractional quantum Hall edge states. In contrast to the simple Laughlin states, a number of charge transfer processes must be accounted for. Nonetheless, it is possible to identify a unique value corresponding to dissipationless transport as the asymptotic large-VV conductance through a tunneling junction, and find fixed points (CFT boundary conditions) corresponding to this value. The symmetries of a given edge tunneling problem determine the appropriate boundary condition, and the boundary condition determines the strong-coupling operator content and current noise.Comment: 6 pages, 3 figures; published versio
    • …
    corecore