3,460 research outputs found

    Exact one- and two-particle excitation spectra of acute-angle helimagnets above their saturation magnetic field

    Full text link
    The two-magnon problem for the frustrated XXZ spin-1/2 Heisenberg Hamiltonian and external magnetic fields exceeding the saturation field Bs is considered. We show that the problem can be exactly mapped onto an effective tight-binding impurity problem. It allows to obtain explicit exact expressions for the two-magnon Green's functions for arbitrary dimension and number of interactions. We apply this theory to a quasi-one dimensional helimagnet with ferromagnetic nearest neighbor J1 < 0 and antiferromagnetic next-nearest neighbor J2 > 0 interactions. An outstanding feature of the excitation spectrum is the existence of two-magnon bound states. This leads to deviations of the saturation field Bs from its classical value Bs(classical) which coincides with the one-magnon instability. For the refined frustration ratio |J2/J1|> 0.374661 the minimum of the two-magnon spectrum occurs at the boundary of the Brillouin zone. Based on the two-magnon approach, we propose general analytic expressions for the saturation field Bs, confirming known previous results for one-dimensional isotropic systems, but explore also the role of interchain and long-ranged intrachain interactions as well as of the exchange anisotropy.Comment: 21 pages, 6 Figures. submitted to Phys. Rev.

    Measurement of the vortex-core radius by scanning tunneling microscopy

    Get PDF
    Using a scanning tunneling microscope operated in a spectroscopic mode we imaged flux-line lattices in niobium diselenide at various external magnetic fields. From the evaluation of a large number of tunneling-current profiles taken across the individual vortices we deduced the dependence of the vortex-code radius on the applied magnetic field. It was found that the core radius shows a pronounced decrease with increasing field, even for H/Hc2<<1. This behavior is qualitatively well characterized by self-consistent solutions of the Usadel equations

    Decision-making on an explicit risk-taking task in preadolescents with attention-deficit/hyperactivity disorder

    Get PDF
    Summary.: Inappropriate risk-taking and disadvantageous decision-making have been described as major behavioural characteristics of patients with attention-deficit/hyperactivity disorder (ADHD). However these behaviours are difficult to measure in laboratory contexts and recent studies have yielded inconsistent results which might be related to task characteristics. The present study adopted the Game of Dice Task, a test procedure in which risks are made explicit and the load on working memory is minimal. As a result, preadolescents with ADHD (N = 23) made significantly more risky choices and suffered major losses of money compared to normal controls (N = 24) but only when they played the game a second time. Differences in risk-taking correlated significantly with hyperactivity as rated by parents and with inhibitory control, but not with working memory performance. The results are discussed in the context of current theories of ADH

    Electron-Phonon Coupling Origin of the resistivity in YNi_{2}B_{2}C Single Crystals

    Full text link
    Resistivity measurements from 4.2 K up to 300 K were made on YNi_{2}B_{2}C single crystals with Tc=15.5 K. The resulting rho(T) curve shows a perfect Bloch-Grueneisen (BG) behavior, with a very small residual resistivity which indicates the low impurity content and the high cristallographic quality of the samples. The value lambda_{tr}=0.53 for the transport electron-phonon coupling constant was obtained by using the high-temperature constant value of d(rho)/dT and the plasma frequency reported in literature. The BG expression for the phononic part of the resistivity rho_{ph}(T) was then used to fit the data in the whole temperature range, by approximating alpha^{2}_{tr}F(Omega) with the experimental phonon spectral density G(Omega) multiplied by a two-step weighting function to be determined by the fit. The resulting fitting curve perfectly agrees with the experimental points. We also solved the real-axis Eliashberg equations in both s- and d-wave symmetries under the approximation alpha^{2}F(Omega)= alpha^{2}_{tr}F(Omega). We found that the value of lambda_{tr} here determined in single-band approximation is quite compatible with Tc and the gap Delta experimentally observed. Finally, we calculated the normalized tunneling conductance, whose comparison with break-junction tunnel data gives indication of the possible s-wave symmetry for the order parameter in YNi_{2}B_{2}C.Comment: 6 pages, 5 figures. Proceedings of SATT10 Conference, to be published in Int. J. Mod. Phys.

    Evaluation of multi-segmental kinematic modelling in the paediatric foot using three concurrent foot models

    Get PDF
    Background: Various foot models are used in the analysis of foot motion during gait and selection of the appropriate model can be difficult. The clinical utility of a model is dependent on the repeatability of the data as well as an understanding of the expected error in the process of data collection. Kinematic assessment of the paediatric foot is challenging and little is reported about multi-segment foot models in this population. The aim of this study was to examine three foot models and establish their concurrent test-retest repeatability in evaluation of paediatric foot motion during gait. Methods: 3DFoot, Kinfoot and the Oxford Foot Model (OFM) were applied concurrently to the right foot and lower limb of 14 children on two testing sessions. Angular data for foot segments were extracted at gait cycle events and peaks and compared between sessions by intraclass correlation coefficient (ICC) with 95% confidence intervals (95% CI) and standard error of measurement (SEM). Results: All foot models demonstrated moderate repeatability: OFM (ICC 0.55, 95% CI 0.16 to 0.77), 3DFoot (ICC 0.47, 95% CI 0.15 to 0.64) and Kinfoot (ICC 0.43, 95% CI −0.03 to 0.59). On the basis of a cut-off of 5°, acceptable mean error over repeated sessions was observed for OFM (SEM 4.61° ± 2.86°) and 3DFoot (SEM 3.88° ± 2.18°) but not for Kinfoot (SEM 5.08° ± 1.53°). Reliability of segmental kinematics varied, with low repeatability (ICC < 0.4) found for 14.3% of OFM angles, 22.7% of 3DFoot angles and 37.6% of Kinfoot angles. SEM greater than 5° was found in 26.2% of OFM, 15.2% of 3DFoot, and 43.8% of Kinfoot segmental angles. Conclusion: Findings from this work have demonstrated that segmental foot kinematics are repeatable in the paediatric foot but the level of repeatability and error varies across the segments of the different models. Information on repeatability and test-retest errors of three-dimensional foot models can better inform clinical assessment and advance understanding of foot motion during gait

    Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2

    Full text link
    We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1} is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J_1-J_2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure

    Weak inter-band coupling in Mg10^{10}B2_{2}: a specific heat analysis

    Full text link
    The superconducting state of Mg10^{10}B2_{2} is investigated by specific heat measurements in detail. The specific heat in the normal state is analyzed using a recently developed computer code. This allows for an extraction of the electronic specific heat in the superconducting state with high accuracy and a fair determination of the main lattice features. One of the two investigated samples shows a hump in the specific heat at low temperatures within the superconducting state, accompanied by an unusual low value of the small gap, Δπ(0)=1.32meV\Delta_{\pi}(0)=1.32 meV, pointing to a very weak inter-band coupling. This sample allows for a detailed analysis of the contribution from the π\pi-band to the electronic specific heat in the superconducting state. Therefore the usual analysis method is modified, to include the individual conservation of entropy of both bands. From analyzing the deviation function D(t)D(t) of MgB2_{2}, the theoretically predicted weak inter-band coupling scenario is confirmed.Comment: major revision
    • …
    corecore