60 research outputs found

    Lactobacillaceae and Cell Adhesion: Genomic and Functional Screening

    Get PDF
    The analysis of collections of lactic acid bacteria (LAB) from traditional fermented plant foods in tropical countries may enable the detection of LAB with interesting properties. Binding capacity is often the main criterion used to investigate the probiotic characteristics of bacteria. In this study, we focused on a collection of 163 Lactobacillaceace comprising 156 bacteria isolated from traditional amylaceous fermented foods and seven strains taken from a collection and used as controls. The collection had a series of analyses to assess binding potential for the selection of new probiotic candidates. The presence/absence of 14 genes involved in binding to the gastrointestinal tract was assessed. This enabled the detection of all the housekeeping genes (ef-Tu, eno, gap, groEl and srtA) in the entire collection, of some of the other genes (apf, cnb, fpbA, mapA, mub) in 86% to 100% of LAB, and of the other genes (cbsA, gtf, msa, slpA) in 0% to 8% of LAB. Most of the bacteria isolated from traditional fermented foods exhibited a genetic profile favorable for their binding to the gastrointestinal tract. We selected 30 strains with different genetic profiles to test their binding ability to non-mucus (HT29) and mucus secreting (HT29-MTX) cell lines as well as their ability to degrade mucus. Assays on both lines revealed high variability in binding properties among the LAB, depending on the cell model used. Finally, we investigated if their binding ability was linked to tighter cross-talk between bacteria and eukaryotic cells by measuring the expression of bacterial genes and of the eukaryotic MUC2 gene. Results showed that wild LAB from tropical amylaceous fermented food had a much higher binding capacity than the two LAB currently known to be probiotics. However their adhesion was not linked to any particular genetic equipment

    Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Get PDF
    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2βˆ’/βˆ’) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2βˆ’/βˆ’ mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2βˆ’/βˆ’ vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2βˆ’/βˆ’ mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2βˆ’/βˆ’ vs. WT mice, with overt pathogen and commensal translocation into the Muc2βˆ’/βˆ’ colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2βˆ’/βˆ’ mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium

    Clarifying the effect of refractive errors and stereopsis on traumatic dental injuries in childhood

    No full text
    Background/Aim Visual acuity and stereopsis both play an important role in developing posture and balance in children. The aim of this study was to investigate whether children with traumatic dental injuries (TDI) have abnormal stereopsis, due to a reduction in visual acuity, compared to children with good dental health. Material and Methods A total of 140 participants (75 with traumatic dental injuries resulting from falls and crashes, and 65 age-matched controls without dental trauma) were enrolled in this prospective, cross-sectional study. The participants underwent complete dental and ophthalmologic examinations. After the ophthalmologic examination, the stereo acuities were assessed by a Titmus stereo test at 40 cm. Results Titmus test scores were significantly worse in the TDI group (mean score 252.46 +/- 629.12 seconds of arc) compared to the control group (mean score 56 +/- 27.39 seconds of arc) (P < .05). The percentage of subjects with abnormal Titmus test scores was higher in the TDI group (28%) than in the control group (3.1%). The mean anisometropia value was 3.03 +/- 2.37 D and 0.55 +/- 0.41 D in the TDI group and the control group, respectively (P < .001). The severity of anisometropia correlated with the degree of stereopsis (r = .83,P < .01). Conclusions The presence of abnormal stereopsis may lead to postural instability which can lead to traumatic dental injuries. The prevalence of abnormal stereopsis in children with TDI was higher than in children with good binocular vision and stereopsis
    • …
    corecore